References:

[AS] Frederick J. Almgren, Jr. and John M. Sullivan. Visualization of soap bubble geometries. Leonardo 24(1992), 267-271.

[AM] François Apéry, with an appendix by Bernard Morin. An algebraic halfway model for the eversion of the sphere. Tohoku Math. J. 44(1992), 103-150.

[BM] Thomas Banchoff and Nelson L. Max. Every sphere eversion has a quadruple point. In Clark, Pecelli and Sacksteder, eds, Contributions to Analysis and Geometry, pp 191-209. Johns Hopkins Univ. Press, 1981.

[Bra] Kenneth A. Brakke. The Surface Evolver. Experimental Math. 1(1992), 141-165.

[BS] Kenneth A. Brakke and John M. Sullivan. Using symmetry features of the surface evolver to study foams. In H.-C. Hege and K. Polthier, eds, Visualization and Mathematics, pp 95-117, Springer, 1997.

[Bry] Robert Bryant. A duality theorem for Willmore surfaces. J. Differential Geometry 20(1984), 23-53.

[Fr] George Francis. A Topological Picturebook. Springer, New York, 1987.

[FM] George Francis and Bernard Morin. Arnold Shapiro's eversion of the sphere. Math. Intelligencer 2(1979), 200-203.

[FSH] George Francis, John M. Sullivan, and Chris Hartman. Computing sphere eversions. In H.-C. Hege and K. Polthier, eds, Mathematical Visualization, pp 237-255, Springer, 1998.

[FSK] George Francis, John M. Sullivan, Robert B. Kusner, Kenneth A. Brakke, Chris Hartman, and Glenn Chappell. The minimax sphere eversion. In H.-C. Hege and K. Polthier, eds, Visualization and Mathematics, pp 3-20, Springer, 1997.

[HKS] Lucas Hsu, Rob Kusner, and John M. Sullivan. Minimizing the squared mean curvature integral for surfaces in space forms. Experimental Mathematics 1(1992), 191-207.

[Hu] John Hughes. Another proof that every eversion of the sphere has a quadruple point. Amer. J. Math. 107(1985), 501-505.

[Ku] Rob Kusner. Conformal geometry and complete minimal surfaces. Bull. Amer. Math. Soc. 17(1987), 291-295.

[Le] Silvio Levy. Making Waves: A Guide to the Ideas Behind "Outside In". AK Peters, Wellesley, MA, 1995.

[LY] Peter Li and S. T. Yau. A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue of compact surfaces. Invent. Math. 69(1982), 269-291.

[Ma] Nelson L. Max. Turning a Sphere Inside Out. International Film Bureau, Chicago, 1977. Video (21 min).

[MP] Bernard Morin and Jean-Pierre Petit. Le retournement de la sphère. In Les Progrès des Mathématiques, pp 32-45. Pour la Science/Belin, Paris, 1980.

[OI] Silvio Levy, Delle Maxwell, and Tamara Munzner. Outside In. AK Peters, Wellesley, MA, 1994. Video (21 min).

[Pe] Ivars Peterson. Contemplating the Optiverse: Surreal films. Science News 154(October 1998), 232-234.

[Ph] Anthony Phillips. Turning a sphere inside out. Sci. Amer. 214(1966), 112-120.

[Sm] Steven Smale. A classification of immersions of the two-sphere. Trans. Amer. Math. Soc. 90(1959), 281-290.

[SFL] John M. Sullivan, George Francis, and Stuart Levy. The Optiverse. In H.-C. Hege and K. Polthier, eds, VideoMath Festival at ICM'98, Springer, 1998. Video (7 min).

[Wi] Thomas J. Willmore. A survey on Willmore immersions. In Geometry and Topology of Submanifolds, IV (Leuven, 1991), pp 11-16. World Sci. Pub., 1992.

2Kb
GALLERY