References
-
ADAMS, C.C.: The Knot Book,
Freeman, New York, 1994.
-
AIGNER, M.: Combiniatrial Theory,
Springer-Verlag, Berlin, Heidelberg, New York, 1979.
-
ASCHER, M.: Ethnomathematics:
A Multicultural View of Mathematical Ideas, Brooks/Cole, 1991.
-
BAIN, G.: Celtic Art - the Methods
of Construction, Dover, New York, 1973.
-
BARRETT, C.: Op-art,
Studio Vista, London, 1970.
-
CAUDRON A.: Classification des
noeuds et des enlancements, Prepublications Univ. Paris Sud, Orsay,
1981.
-
CONWAY J.H.: An enumeration of knots
and links and some of their algebraic properties, In Computational
Problems in Abstract Algebra, Pergamon Press, New York, 1970, 329-358.
-
CROMWELL, P.R.: Celtic knotwork:
mathematical art, The Math. Intelligencer 15, 1 (1993),
36-47.
-
DOWKER, C.H.; THISTLETHWAITE, M.B.:
Classification
of knot projections, Topology Appl. 16 (1983), 19-31.
-
DUNHAM D., Hyperbolic Celtic
Knot Patterns, Bridges: Mathematical Connections in Art, Music,
and Science, Conference Proceedings, 13-23, 2000.
-
FARMER, D.; STANFORD, B.: Knots
and Surfaces, American Mathematical Society, 1996.
-
FONTINHA, M.: Desenhos na areiados
Quiocos do Nordeste de Angola, Inst. de Invest. Cientif. Tropical,
Lisboa, 1983.
-
GARDNER, M.: Mathematical Puzzles
and Diversions, Penguin Books, London, 1991.
-
GERDES, P.: Reconstruction and extension
of lost symmetries, Comput. Math. Appl. 17, 4-6 (1989)
791-813 (also in Symmetry: Unifying Human Understanding II, Ed.
I.Hargittai).
-
GERDES, P.: On ethnomathematical
research and symmetry, Symmetry: Culture and Science 1,
2 (1990) 154-170.
-
GERDES, P.: Geometria Sona,
-
GERDES, P.: Extensions of a reconstructed
Tamil ring-pattern, in The Pattern Book: Fractals, Art and Nature,
Ed. C.Pickower. World Scientific, Singapoore, 1995, pp. 377-379.
-
GERDES, P.: Lunda Geometry -
Designs, Polyominoes, Patterns, Symmetries, Universidade Pedagogica,
Mocambique, 1996.
-
GERDES, P.: On mirror curves and
Lunda designs, Comput. & Graphics 21, 3 (1997) 371-378.
-
GERDES, P.: On Lunda-designs and
Lunda-animals. Fibonacci returns to Africa, The Fibonacci Quarterly
(to appear).
-
GERDES P.: Geometry from Africa:
Mathematical and Educational Explorations, Mathematical Association
of America, Washington DC, 2000.
-
GOLOMB, S.: Polyominoes: Puzzles,
Patterns, Problems and Packings, Princeton University Press, New
York, 1994.
-
GRÜNBAUM, B.; SHEPHARD, G.C.:
Tilings
and Patterns, W.H.Freeman, New York, 1987.
-
HARARY, F.; PALMER, E.: Graphical
Enumeration, Academic Press, New York, London, 1973.
-
JABLAN, S.V.: Periodic antisymmetry
tilings, Symmetry: Culture and Science 3, 3 (1992), 281-291.
-
JABLAN, S.V.: Magic, CEVISAMA'94,
Valencia.
-
JABLAN, S.V.: Theory
of Symmetry and Ornament, The Math. Inst., Belgrade, 1995.
-
JABLAN, S.V.: Mirror generated curves,
Symmetry:
Culture and Science 6, 2 (1995) 275-278.
-
JABLAN, S.V.: Are Borromean Links
so Rare?, Forma, 14, 4 (1999), 269-277 (also in Visual
Mathematics).
-
JABLAN, S.V.: Ordering
Knots, Visual Mathematics, 1998.
-
KAUFFMAN L.H.: On Knots,
Princeton University Press, Princeton, 1987.
-
KIRKMAN, T.P.: The enumeration,
description and construction of knots of fewer than ten crossings,
Trans.
Roy. Soc. Edinburgh, 32 (1885), 281-309.
-
LAYARD, J.: Labyrinth ritual in
South India: threshold and tattoo designs, Folk-Lore 48
(1937) 115-182.
-
LIVINGSTON, C.: Knot Theory,
Math. Assoc. Amer., Washington DC, 1993.
-
PEARSON, E.: People of the Aurora,
Beta Books, San Diego, 1977.
-
SANTOS, E. DOS: Sobre a matematica
dos Quiocos de Angola, in Garcia de Orta, Lisboa, Vol. 8, 1960,
257-271.
-
SANTOS, E. DOS: Contribuicao para
o estudo das pictografias e ideogramas dos Quiocos, in Estudos sobre
a etnologia do ultramar portugues, Lisboa, Vol. 2, 1961, 17-131.
-
TAIT, P.G.: On knots, I, II, III,
in Scientific Papers, Vol. 1, C.U.P., London, 1898, 273-347.
-
TURNER, J.C.; GRIEND, P. VAN DE (Eds.):
History
and Science of Knots, World Scientific, Singapoore, 1996.
-
WASHBURN, D.; CROWE, D.: Symmetries
of Culture, University of Washington Press, Seattle, 1988.
-
ZASLAVSKY C.: Africa Counts:
Number and Pattern in African Culture, Weber & Shmidt, Boston,
1973.
WWW Sites
Centre for the
Popularization of Mathematics
-
Exibition:
Mathematics and Knots
Dragon curves
Ethnomathematics
-
Ethnomathematics
Study
Geometry Junkyard
-
Knot Theory
Info
on Polyominoes
ISIS Symmetry (International Society for the
Interdisciplinary Study of Symmetry)
A Knot Theory Primer
Knot
a Braid of Links
KnotPlot
Site
Knots on the Web
Learning in Motion
Mouse's Knot Theory Home
Page
This work was supported by the
Research Support Scheme of the OSI/HESP, grant No. 85/1997.
|