A New Class of Tilings with Two Prototiles
Brian Wichmann |
No | Symmetries | Incidence | T | IH | Polygon | Name |
Class | Class | |||||
1 | [cmm,d2,c1] | [a+b+c+d+e+;A+b-c+d-e-] | [32.43] | 54 | 2-star,p/3 | NEW16 |
2 | [cmm,d2,c1] | [a+b+c+d+;A+b+c-d-] | [3.52.4] | 54 | 2-star,p/3 | NEW17 |
3 | [cmm,d2,c1] | [a+b+c+d+;A+b-c+d-] | [3.6.42] | 54 | 2-star,p/3 | NEW52 |
4 | [cmm,d2,c1] | [a+b+c+;A+b+c-] | [6.52] | 54 | 2-star,p/3 | NEW53 |
5 | [cmm,d2,c1] | [a+b+c+d+;A+b-c+d-] | [32.82] | 78 | 2-star,p/3 | NEW1 |
6 | [cmm,d2,c1] | [a+b+c+;A+b+c-] | [3.102] | 78 | 2-star,p/3 | NEW20 |
7 | [cmm,d2,c2] | [(a+b+c+)2;A+b-c-] | [(32.4)2] | 60 | 2-star,p/3 | NEWA |
8 | [cmm,d2,c2] | [(a+b+)2;A+b-] | [(3.6)2] | 60 | 2-star,p/3 | NEW54 |
9 | [cmm,d2,d1] | [a+ba-c+d+d-c-;A+bc-d+] | [37] | 26 | 2-star,p/3 | NEW12 |
10 | [cmm,d2,d1] | [a+ba-c+c-;A+bc+] | [4.32.42] | 26 | 2-star,p/5 | S52T |
11 | [cmm,d2,d1] | [a+a-b+c+c-b-;A+b-c+] | [3.4.34] | 26 | 2-star,p/3 | NEW14 |
12 | [cmm,d2,d1] | [a+a-b+b-;A+b+] | [44] | 26 | 2-star,p/3 | NEW15 |
13 | [cmm,d2,d1] | [ab+c+d+d-c-b-;Ab-c-d+] | [32.4.33.4] | 26 | 2-star,p/3 | NEW11 |
14 | [cmm,d2,d1] | [ab+c+c-b-;Ab-c+] | [62.33] | 26 | 2-star,p/3 | NEW13 |
15 | [cmm,d2,d1] | [ab+c+dc-b-;Ab-c+d] | [32.44] | 67 | 2-star,p/3 | NEW18 |
16 | [cmm,d2,d1] | [ab+cb-;Ab+c] | [54] | 67 | 2-star,p/3 | NEW19 |
17 | [cmm,d2,d1] | [ab+c+c-b-;Ab-c+] | [32.63] | 91 | 2-star,p/3 | NEW21 |
18 | [cmm,d2,d1] | [ab+b-;Ab+] | [83] | 91 | 2-star,p/3 | NEW22 |
19 | [cmm,d2,d2] | [(ab+c+c-b-)2;Ab-c+] | [310] | 17 | 2-star,p/3 | NEW10 |
20 | [cmm,d2,d2] | [(ab+b-)2;Ab+] | [46] | 17 | 2-star,p/4 | NEW2 |
21 | [pmm,d2,c1] | [a+b+c+d+e+;A+b-c-d-e-] | [32.43] | 48 | 2-star,p/3 | NEW27 |
22 | [pmm,d2,c1] | [a+b+c+d+;A+b-c-d-] | [3.6.42] | 48 | 2-star,p/2 | NEW5 |
23 | [pmm,d2,c1] | [a+b+c+;A+b-c-] | [62.4] | 48 | 2-star,p/3 | NEW29 |
24 | [pmm,d2,d1] | [a+ba-c+dc-;A+bc-d] | [34.42] | 65 | 2-star,p/3 | NEW28 |
25 | [pmm,d2,d1] | [a+ba-c;A+bc] | [6.32.6] | 65 | 2-star,p/3 | NEW30 |
26 | [pmm,d2,d1] | [a+a-b+cb-;A+b-c] | [3.4.3.42] | 65 | 2-star,p/3 | NEW31 |
27 | [pmm,d2,d1] | [a+a-b;A+b] | [6.4.6] | 65 | 2-star,p/2 | CM006A |
28 | [pmm,d2,d1] | [ab+c+dc-b-;Ab-c-d] | [32.44] | 65 | 2-star,p/3 | NEW23 |
29 | [pmm,d2,d1] | [ab+cb-;Ab-c] | [62.42] | 65 | 2-star,p/3 | NEW25 |
30 | [pmm,d2,d2] | [(ab+cb-)2;Ab-c] | [(32.42)2] | 72 | 2-star,p/3 | NEW24 |
31 | [pmm,d2,d2] | [(ab)2;Ab] | [64] | 72 | 2-star,p/3 | NEW26 |
32 | [pmm,d2,d2] | [(a+ba-c)2;A+bc] | [38] | 72 | 2-star,p/2 | B17 |
33 | [pmm,d2,d2] | [(a+a-b)2;A+b] | [(3.4.3)2] | 72 | 2-star,p/2 | B14 |
Table 1: Order 2: cmm and pmm
No | Symmetries | Incidence | T | IH | Polygon | Name |
Class | Class | |||||
34 | [p3,c3,c1] | [a+b+c+d+e+f+g+;A+g+d+c+f+e+b+] | [37] | 7 | triangle | B16 |
35 | [p3,c3,c1] | [a+b+c+d+e+;A+c+b+e+d+] | [42.3.4.3] | 7 | triangle | NEW66 |
36 | [p3,c3,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.6.3.6] | 33 | triangle | NEW45 |
37 | [p3,c3,c1] | [a+b+c+;A+c+b+] | [92.3] | 33 | triangle | NEW74 |
38 | [p3,c3,c3] | [(a+b+c+)3;A+c+b+] | [39] | 10 | triangle | B12 |
39 | [p31m,c3,c1] | [a+b+c+d+e+;A+e+c-d-b+] | [32.4.6.4] | 30 | triangle | B03 |
40 | [p31m,c3,c1] | [a+b+c+;A+b-c-] | [63] | 30 | triangle | NEW44 |
41 | [p31m,c3,c1] | [a+b+c+d+;A+d+c-b+] | [32.122] | 38 | triangle | NEW43 |
42 | [p31m,c3,d1] | [a+b+b-a-c+d+d-c-;A+c-b-d-] | [38] | 16 | triangle | NEW49 |
43 | [p31m,c3,d1] | [a+a-b+b-;A+b-] | [52.3.5] | 16 | triangle | NEW85 |
44 | [p31m,c3,d1] | [a+b+b-a-c+c-;A+c-b-] | [(32.6)2] | 36 | triangle | L2311 |
45 | [p31m,c3,d3] | [(a+ba-c)3;A+cb] | [312] | 18 | triangle | L2310 |
45 | ... | [(a+ba-c)3;A+cb] | [312] | 18 | triangle | J59A |
45 | ... | [(a+ba-c)3;A+cb] | [312] | 18 | triangle | L255 |
46 | [p31m,d3,c1] | [a+b+c+d+e+;A+b-d+c+e-] | [32.4.3.4] | 30 | 3-star,p/6 | NEW99 |
47 | [p31m,d3,c1] | [a+b+c+d+;A+c+b+d-] | [(3.5)2] | 30 | 3-star,p/6 | NEWB |
48 | [p31m,d3,c1] | [a+b+c+;A+c+b+] | [62.3] | 30 | hexagon | NEWS |
49 | [p31m,d3,c3] | [(a+b+)3;A+b-] | [36] | 89 | 3-star,p/6 | NEWC |
50 | [p31m,d3,d1] | [ab+c+d+d-c-b-;Ab-d+c+] | [37] | 16 | 3-star,p/4 | NEW48 |
50 | ... | [ab+c+d+d-c-b-;Ab-d+c+] | [37] | 16 | triangle | NEW46 |
51 | [p31m,d3,d1] | [ab+c+c-b-;Ac+b+] | [42.3.4.3] | 16 | triangle | C05B |
51 | ... | [ab+c+c-b-;Ac+b+] | [42.3.4.3] | 16 | 3-star,p/6 | NEW47 |
52 | [p3m1,d3,c1] | [a+b+c+d+;A+b-c-d-] | [32.62] | 87 | 3-star,p/6 | NEW51 |
53 | [p3m1,d3,c1] | [a+b+c+;A+b-c-] | [3.6.9] | 87 | 3-star,p/6 | NEWD |
54 | [p3m1,d3,d1] | [ab+c+c-b-;Ab-c-] | [32.6.3.6] | 35 | triangle | B18 |
54 | ... | [ab+c+c-b-;Ab-c-] | [32.6.3.6] | 35 | 3-star,p/4 | NEW42 |
55 | [p3m1,d3,d1] | [ab+b-;Ab-] | [92.3] | 35 | triangle | B13 |
55 | ... | [ab+b-;Ab-] | [92.3] | 35 | 3-star,p/4 | NEW41 |
56 | [p3m1,d3,d1] | [a+b+b-a-c+c-;A+b-c-] | [36] | 35 | 3-star,p/6 | NEWT |
57 | [p3m1,d3,d1] | [a+a-b+b-;A+b-] | [3.6.32] | 35 | 3-star,p/6 | NEWU |
58 | [p3m1,d3,d3] | [(ab+b-)3;Ab-] | [39] | 19 | 3-star,2p/3 | J44A |
Table 2: Order 3: p3, p31m and p3m1
No | Symmetries | Incidence | T | IH | Polygon | Name |
Class | Class | |||||
59 | [p4,c4,c1] | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [34.4.3] | 28 | square | P16 |
59 | ... | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [34.4.3] | 28 | square | S28A |
60 | [p4,c4,c1] | [a+b+c+d+;A+b+d+c+] | [44] | 28 | square | B01 |
60 | ... | [a+b+c+d+;A+b+d+c+] | [44] | 28 | square | R4 |
61 | [p4,c4,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.43] | 55 | square | NEW55 |
62 | [p4,c4,c1] | [a+b+c+;A+c+b+] | [62.4] | 55 | square | NEW56 |
63 | [p4,c4,c1] | [a+b+c+d+;A+d+c+b+] | [32.82] | 79 | square | NEW57 |
64 | [p4,c4,c2] | [(a+b+c+)2;A+c+b+] | [(32.4)2] | 61 | square | L3010 |
64 | ... | [(a+b+c+)2;A+c+b+] | [(32.4)2] | 61 | square | B02 |
65 | [p4,c4,c4] | [(a+b+)4;A+b+] | [38] | 62 | square | NEW4 |
66 | [p4g,c4,c1] | [a+b+c+d+e+;A+e+c-d-b+] | [32.43] | 56 | square | NEWE |
67 | [p4g,c4,c1] | [a+b+c+;A+b-c-] | [62.4] | 56 | square | NEW58 |
68 | [p4g,c4,c1] | [a+b+c+d+;A+d+c-b+] | [32.82] | 81 | square | NEW59 |
69 | [p4g,c4,d1] | [a+b+b-a-c+dc-;A+c-b-d] | [37] | 29 | square | H2C12 |
69 | ... | [a+b+b-a-c+dc-;A+c-b-d] | [37] | 29 | square | K09A |
70 | [p4g,c4,d1] | [a+a-b;A+b] | [53] | 29 | square | H2C34 |
71 | [p4g,c4,d1] | [a+b+b-a-c+c-;A+c-b-] | [(32.4)2] | 71 | square | G8 |
71 | ... | [a+b+b-a-c+c-;A+c-b-] | [(32.4)2] | 71 | square | L3311 |
72 | [p4g,c4,d2] | [(a+ba-c)2;A+cb] | [38] | 73 | square | K09B |
73 | [p4g,d2,c1] | [a+b+c+d+e+;A+b-d+c+e-] | [32.43] | 56 | 2-star,p/3 | NEWF |
74 | [p4g,d2,c1] | [a+b+c+d+;A+b-d+c+] | [3.5.4.5] | 56 | 2-star,p/3 | NEW60 |
75 | [p4g,d2,c1] | [a+b+c+;A+c+b+] | [62.4] | 56 | 2-star,p/3 | NEW61 |
76 | [p4g,d2,c4] | [(a+b+)4;A+b-] | [38] | 63 | 2-star,p/3 | NEWG |
77 | [p4g,d2,d1] | [ab+c+d+d-c-b-;Ab-d+c+] | [33.4.3.4.3] | 29 | 2-star,p/3 | NEW62 |
78 | [p4g,d2,d1] | [ab+c+c-b-;Ac+b+] | [45] | 29 | 2-star,p/3 | NEWH |
Table 3: Order 4: p4, and p4g
No | Symmetries | Incidence | T | IH | Polygon | Name |
Class | Class | |||||
79 | [p4m,d2,c1] | [a+b+c+d+;A+b-c-d-] | [32.82] | 80 | 2-star,p/3 | NEWI |
80 | [p4m,d2,c1] | [a+b+c+;A+b-c-] | [3.12.8] | 80 | 2-star,p/5 | NEWV |
81 | [p4m,d2,d1] | [a+b+b-a-c+c-;A+b-c-] | [(32.4)2] | 70 | 2-star,p/3 | NEWJ1 |
82 | [p4m,d2,d1] | [a+a-b+b-;A+b-] | [3.8.3.4] | 70 | 2-star,p/3 | NEW65 |
83 | [p4m,d2,d1] | [ab+c+c-b-;Ab-c-] | [32.8.4.8] | 82 | 2-star,p/3 | NEWJ2 |
84 | [p4m,d2,d1] | [ab+b-;Ab-] | [122.4] | 82 | 2-star,p/3 | NEW34 |
85 | [p4m,d2,d4] | [(ab+b-)4;Ab-] | [(32.4)4] | 76 | 2-star,p/2 | J51A |
86 | [p4m,d4,c1] | [a+b+c+d+;A+b-c-d-] | [32.4.8] | 80 | 4-star,p/4 | NEW8 |
87 | [p4m,d4,c1] | [a+b+c+;A+b-c-] | [3.4.12] | 80 | 4-star,p/4 | NEW36 |
88 | [p4m,d4,c1] | [a+b+c+;A+b-c-] | [3.6.8] | 80 | 4-star,p/4 | NEW37 |
89 | [p4m,d4,d1] | [ab+c+c-b-;Ab-c-] | [32.43] | 70 | square | B04B |
89 | ... | [ab+c+c-b-;Ab-c-] | [32.43] | 70 | 4-star,p/4 | NEW32 |
90 | [p4m,d4,d1] | [ab+b-;Ab-] | [62.4] | 70 | square | J25A |
90 | ... | [ab+b-;Ab-] | [62.4] | 70 | 4-star,3p/4 | B07 |
91 | [p4m,d4,d1] | [a+ba-c+c-;A+bc-] | [34.4] | 82 | 4-star,p/4 | NEWK |
92 | [p4m,d4,d1] | [a+a-b+b-;A+b-] | [(3.4)2] | 82 | 4-star,p/4 | NEW35 |
93 | [p4m,d4,d1] | [a+a-b;A+b] | [3.8.3] | 82 | 4-star,p/4 | NEW38 |
94 | [p4m,d4,d1] | [ab+cb-;Ab-c] | [32.82] | 82 | square | B19 |
94 | ... | [ab+cb-;Ab-c] | [32.82] | 82 | 4-star,p/4 | NEW39 |
95 | [p4m,d4,d1] | [ab;Ab] | [122] | 82 | 4-star,p/4 | NEW40 |
96 | [p4m,d4,d2] | [(ab+b-)2;Ab-] | [(32.4)2] | 75 | square | A221 |
96 | ... | [(ab+b-)2;Ab-] | [(32.4)2] | 75 | 4-star,p/4 | NEW33 |
97 | [p4m,d4,d4] | [(ab)4;Ab] | [38] | 76 | 4-star,p/4 | NEWL |
No | Symmetries | Incidence | T | IH | Polygon | Name |
Class | Class | |||||
98 | [p6,c3,c1] | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [34.6.3] | 21 | triangle | B09 |
99 | [p6,c3,c1] | [a+b+c+d+;A+b+d+c+] | [43.6] | 21 | triangle | NEW67 |
100 | [p6,c3,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.4.6.4] | 31 | triangle | NEW68 |
101 | [p6,c3,c1] | [a+b+c+;A+c+b+] | [63] | 31 | triangle | NEW69 |
102 | [p6,c3,c1] | [a+b+c+d+;A+d+c+b+] | [32.122] | 39 | triangle | NEW70 |
103 | [p6,c3,c2] | [(a+b+c+)2;A+c+b+] | [(32.6)2] | 34 | triangle | L4212 |
103 | ... | [(a+b+c+)2;A+c+b+] | [(32.6)2] | 34 | triangle | B10 |
104 | [p6,c3,c6] | [(a+b+)6;A+b+] | [312] | 11 | triangle | F242F |
104 | ... | [(a+b+)6;A+b+] | [312] | 11 | triangle | B11 |
105 | [p6,c6,c1] | [a+b+c+d+e+f+;A+f+c+e+d+b+] | [36] | 21 | hexagon | P010 |
106 | [p6,c6,c1] | [a+b+c+d+;A+b+d+c+] | [43.3] | 21 | hexagon | B08 |
106 | ... | [a+b+c+d+;A+b+d+c+] | [43.3] | 21 | hexagon | NEW71 |
107 | [p6,c6,c1] | [a+b+c+d+e+;A+e+d+c+b+] | [32.4.3.4] | 31 | hexagon | NEW72 |
108 | [p6,c6,c1] | [a+b+c+;A+c+b+] | [62.3] | 31 | hexagon | NEW73 |
109 | [p6,c6,c1] | [a+b+c+d+;A+d+c+b+] | [32.62] | 88 | hexagon | NEW75 |
110 | [p6,c6,c2] | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | F135 |
110 | ... | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | F49 |
110 | ... | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | W39 |
110 | ... | [(a+b+c+)2;A+c+b+] | [36] | 34 | hexagon | RS1 |
111 | [p6,c6,c3] | [(a+b+)3;A+b+] | [36] | 90 | hexagon | F242E |
111 | ... | [(a+b+)3;A+b+] | [36] | 90 | hexagon | NEW76 |
111 | ... | [(a+b+)3;A+b+] | [36] | 90 | hexagon | B06 |
Table 5: Order 6: p6
No | Symmetries | Incidence | T | IH | Polygon | Name |
Class | Class | |||||
112 | [p6m,d2,c1] | [a+b+c+d+;A+b-c-d-] | [32.6.12] | 77 | 2-star,p/3 | NEWM |
113 | [p6m,d2,c1] | [a+b+c+;A+b-c-] | [3.9.12] | 77 | 2-star,p/3 | NEW77 |
114 | [p6m,d2,c1] | [a+b+c+;A+b-c-] | [3.18.6] | 77 | 2-star,p/6 | NEW78 |
115 | [p6m,d2,d1] | [a+b+b-a-c+c-;A+b-c-] | [35.6] | 32 | 2-star,p/2 | G7 |
116 | [p6m,d2,d1] | [a+a-b+b-;A+b-] | [(3.6)2] | 32 | 2-star,p/6 | NEW79 |
117 | [p6m,d2,d1] | [a+a-b+b-;A+b-] | [3.12.32] | 32 | 2-star,p/6 | NEW80 |
118 | [p6m,d2,d1] | [a+b+c+c-b-;A+b-c-] | [32.12.3.12] | 40 | 2-star,p/3 | NEW81 |
119 | [p6m,d2,d1] | [ab+b-;Ab-] | [182.3] | 40 | 2-star,p/6 | NEW82 |
120 | [p6m,d2,d1] | [ab+c+c-b-;Ab-c-] | [32.63] | 92 | 2-star,p/3 | NEW83 |
121 | [p6m,d2,d1] | [ab+b-;Ab-] | [92.6] | 92 | 2-star,p/3 | NEW84 |
122 | [p6m,d2,d3] | [(ab+b-)3;Ab-] | [(32.6)3] | 93 | 2-star,p/2 | NEW3 |
123 | [p6m,d2,d6] | [(ab+b-)6;Ab-] | [318] | 20 | 2-star,p/2 | B04 |
124 | [p6m,d3,c1] | [a+b+c+d+;A+b-c-d-] | [32.4.12] | 77 | 3-star,2p/3 | NEW7 |
125 | [p6m,d3,c1] | [a+b+c+;A+b-c-] | [3.6.12] | 77 | 3-star,p/6 | NEWN |
126 | [p6m,d3,c1] | [a+b+c+;A+b-c-] | [3.18.4] | 77 | 3-star,p/6 | NEW86 |
127 | [p6m,d3,d1] | [ab+c+c-b-;Ab-c-] | [32.4.6.4] | 32 | 3-star,2p/3 | NEW6 |
127 | ... | [ab+c+c-b-;Ab-c-] | [32.4.6.4] | 32 | 3-star,p/6 | NEWP2 |
128 | [p6m,d3,d1] | [ab+b-;Ab-] | [63] | 32 | 3-star,p/6 | NEW87 |
129 | [p6m,d3,d1] | [ab+cb-;Ab-c] | [32.122] | 40 | 3-star,p/6 | NEW88 |
130 | [p6m,d3,d1] | [ab;Ab] | [182] | 40 | 3-star,p/6 | NEW89 |
131 | [p6m,d3,d1] | [a+ba-c+c-;A+bc-] | [34.6] | 92 | 3-star,2p/3 | NEW9 |
131 | ... | [a+ba-c+c-;A+bc-] | [34.6] | 92 | 3-star,p/6 | NEWP1 |
132 | [p6m,d3,d1] | [a+a-b+b-;A+b-] | [3.4.3.6] | 92 | 3-star,p/6 | NEW90 |
133 | [p6m,d3,d1] | [a+a-b;A+b] | [3.12.3] | 92 | 3-star,p/6 | NEW91 |
134 | [p6m,d3,d2] | [(ab+b-)2;Ab-] | [(32.6)2] | 37 | 3-star,p/6 | NEWQ |
135 | [p6m,d3,d6] | [(ab)6;Ab] | [312] | 20 | 3-star,2p/3 | J59B |
136 | [p6m,d6,c1] | [a+b+c+d+;A+b-c-d-] | [32.4.6] | 77 | 6-star,p/3 | NEWR |
137 | [p6m,d6,c1] | [a+b+c+;A+b-c-] | [3.62] | 77 | 6-star,p/6 | NEW92 |
138 | [p6m,d6,c1] | [a+b+c+;A+b-c-] | [3.9.4] | 77 | 6-star,p/3 | NEW93 |
139 | [p6m,d6,d1] | [ab+c+c-b-;Ab-c-] | [32.4.3.4] | 32 | hexagon | C09B |
139 | ... | [ab+c+c-b-;Ab-c-] | [32.4.3.4] | 32 | 6-star,p/3 | S14A |
140 | [p6m,d6,d1] | [ab+b-;Ab-] | [62.3] | 32 | 6-star,p/3 | NEW94 |
141 | [p6m,d6,d1] | [a+ba-c+c-;A+bc-] | [35] | 40 | 6-star,p/3 | NEW96 |
142 | [p6m,d6,d1] | [a+a-b;A+b] | [3.6.3] | 40 | 6-star,p/3 | NEW97 |
143 | [p6m,d6,d1] | [a+a-b+b-;A+b-] | [3.4.32] | 40 | 6-star,p/3 | NEW98 |
144 | [p6m,d6,d1] | [ab+cb-;Ab-c] | [32.62] | 92 | hexagon | VA1 |
145 | [p6m,d6,d1] | [ab;Ab] | [92] | 92 | 6-star,p/3 | NEW95 |
146 | [p6m,d6,d2] | [(ab+b-)2;Ab-] | [36] | 37 | hexagon | B20 |
147 | [p6m,d6,d3] | [(ab)3;Ab] | [36] | 93 | 6-star,p/3 | B15 |
147 | ... | [(ab)3;Ab] | [36] | 93 | hexagon | B05 |
changes done are in John's letter, 25th June 2001
Summaries of the tilings from these tables are as follows:
The enumeration is completed by showing how to obtain the tilings of this class from a marked isohedral tiling. We do those by example, taking the marked isohedral class 92 which is shown in Figure 4.The regular tile must have its centre on the edge of the isohedral tiling. There are just three positions for this, marked A (centre for d6), B (centre for d3) and C (centre for d2) in Figure 4.
We now consider in turn those three positions:
Note that it is not always possible to place a regular tile on the edge of the isohedral tiling, even when the point in question has the appropriate symmetry. Consider the tiling NEW45, but with the triangles removed, ie, the original marked isohedral tiling. A triangle cannot be placed at the vertex of valency 6 although that point has the necessary symmetry (because it would not be edge-to-edge).
In the case of the irregular tile, it may be necessary to avoid a specific construction which would introduce an unwanted symmetry. For an example of this, see NEW97.
In some cases, a potential tiling of this class is not possible, since the irregular tile must, in fact, be regular.
It would seem that a similar reasoning to that applied here would allow for the enumeration of, say, two (distinct) regular tiles and an irregular one. However, the number of cases could make such an enumeration very tedious.
1 John Dawes died on the 19th January 2002 and hence this article is dedicated to his memory.