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1. INTRODUCTION

Mathematically symmetries occur for many objects and they have a quite general
notion. They are automorphisms of a mathematical structure leaving invariant
characteristic properties or quantities defined for this structure. For example, in
Euclidean geometry symmetric figures mostly admit a non-trivial isometric self-map of
the ambient Euclidean space, which also maps the figure onto itself. Hence this map,
restricted to the figure, obviously preserves all the metric properties of that figure. But
also combinatorial symmetries are considered where the self-map of the figure only
preserves the combinatorial structure, while metric relations may change after having
applied the map. Lots of different types of such symmetries are known, and all of them
distinguish the shape of such a figure from the shape in the general case in a way which
more or less immediately can be noticed by looking at that figure.

In the case of planar curves reflectional or rotational symmetries are considered as
remarkable properties. Also self-similarities like in the case of spirals are of interest,
and they are used to characterize certain spirals by admitting a big family of self-
similarities. These properties have consequences for utilizing certain curves in the
applications of geometry. Spatial generalizations of these notions are obvious, and in
space the possibilities of possessing symmetries are even richer for curves. Compare a
helix with a circle, for example. The aim of this short note is to explain the impact of so-
called tangential symmetries on the shape of curves in the Euclidean plane and in
Euclidean 3-space. As symmetry notions they seem to be quite weak, but nevertheless
they have visible consequences for the shape of these curves.
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2. TANGENTIAL SYMMETRIES IN THE PLANE

For closed smooth curves in the plane three types of tangential symmetries are of
interest. These symmetries always consist of a group of smooth self-maps on the
domain S~ for the parametrization c : S1 ~ E2 of the curve. The maps are assumed to
assign points with parallel tangents to each other, and may be subject to additional
conditions.

The general case without restrictive conditions has been studied by J. Shaer
(unpublished) and F. J. Craveiro de Carvalho and S.A. Robertson [CR1]. Some
classification results are obtained for open curves by the latter while J. Shaer provided a
complete description of the shape of closed curves having a non-trivial group of tangent
preserving self-maps. Mathematically spoken, the asignment of their unit tangents
factorizes through a multiple covering map of the unit sphere for these curves, after
having identified tangent vectors with opposite directions. For example in the locally
convex case, the group Za characterizes strictly convex ovals. Centrally symmetric
curves may serve as examples for the nonconvex case. More general groups lead to
curves with a finite number of loops, directed to the same "interior" side of the curve in
the locally convex case and possessing symmetries concerning the shape of "interior"
and "exterior" loops and bumps in the general case. This shape can be visualized very
easily, and it obviously determines a fairly special structure for these curves.

If the tangential symmetry is assumed to preserve the normal lines in addition, then we
get what has been introduced by H. Farran and S.A. Robertson [FR] as exterior self-
parallelism in the general context of immersions. For closed curves this reduces to the
notion of rosettes of constant width. In particular, these curves are locally strictly
convex, only the cyclic group of order two can appear as a non-trivial group of self-
parallelisms, and the rosettes can be generated in a very special way: A rigid line
segment could be moved along the curve, connecting point and image point for the only
non-trivial tangential symmetry, such that this segment always will be a normal to the
curve at its endpoints. It is easy to imagine the shape of such curves, though they are
more general than the classical rosettes, where a rotational symmetry can be observed.
In this general case the rotational symmetry only refers to the loop structure. Details on
rosettes of constant width can be found in the paper of W. Cieslak and W. Mozgawa
[CM] and in [Wl].

Finally, assuming as a stronger requirement, that any normal line of the curve can
intersect the curve as a normal line only, we arrive at the notion of transnormality.
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This has been introduced by S.A. Robertson [R1] for the more general situation of
immersions into Euclidean spaces, but in the simple case of a closed curve in the plane
it leads immediately to convex curves of constant width bounding planar convex
domains of constant width. This characterization is a classical result. There is a vast
amount of literature on ovals of constant width. For, example a comprehensive survey
on classical results already could be found in the book of T. Bonnesen and W. Fenchel
[BF]. Later surveys are given in handbooks on convexity. These curves may be
considered as the trivial case of rosettes of constant width where no loops occur. Hence
the kinematic interpretation is simple. They are frequently used in applied geometry.
Most famous is their application to the construction of the cylinder and the piston for
the Wankel engine.

3. TANGENTIAL SYMMETRIES FOR SPACE CURVES

For closed smooth curves in Euclidean 3-space the most general type of tangential
symmetry described above will be too general to lead to conclusions on the shape of the
curve. Hence we start immediately with the notions of parallelism and self-parallelism
[FR]:
The exterior parallelism of two smooth closed curves Cl, c2 : S1 ~ E3 is defined by the
following condition: For every parameter t E S1 the affine spaces normal to Cl at cx(t)
and c2 at c2(t) coincide. This condition has been shown to be equivalent to the condition
that both curves are connected by a parallel section of their normal bundles (see [W2]),
i.e., there is a smooth normal vector field e~ along cl such that

c2(t) = cl(t) + 2el(t) and prn(Vc.,(oe~) = 0 (1)

for all t E S~, where all(t) denotes the tangent vector field of cl as usual and prn denotes
the orthogonal projection to the corresponding normal (vector) space of cl. Previous
investigations of this notion for curves could be found in the paper [CR2] by F.J.
Craveiro de Carvalho and S.A. Robertson and in [W3].

Hence the existence of a parallel mate for c : S1 --~ E3 has been reduced to the search for
a global parallel normal vector field along c. Generally, these vector fields only exist
locally along c. Parallel transfer of the normal plane along one period of c with respect
to the normal connection leads to a rotation of the normal plane, which is characterized
(up to integer multiples of 2~r) by an oriented angle ~c), which we call the total normal
twist of c. For Frenet curves this quantity is given by their total torsion up to integer
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multiples of 2re. Looking at general orthonormal frame fields {T, eL, e2} along c, where
T denotes the unit tangent field of c, and setting

(0~2 = < ~Tzel,e2 > = - < VTe2,el > = - 0)21, (2)

we get for the total normal twist of c (up to integer multiples of 2re)

a(c) = Is’ o t( Octt (3)
where there is no need to parametrize c with arclength.

A self-parallelism of c is given by a diffeomorphism fi : S~ --~ St such that c and c ¯ fi are
parallel in the exterior sense. This is the notion of tangential symmetry to be discussed
now. Clearly only closed curves with vanishing total twist possibly will admit such a
tangential symmetry. The variety of these curves has been studied in much detail in a
joint paper with T.F. Mersal [MW]. But already in a previous paper [W3] curves with
non-trivial tangential symmetries have been related to a center curve with total normal
twist being a rational multiple of 2re in the following way: Take the non-vanishing
normal vector to the center curve, connecting the center curve and the original curve at
some point, and apply normal parallel transfer to this vector along several periods of the
center curve, until the trace of the endpoint of this vector will lead to a closed curve.
This will restore the original curve. Moreover, starting the same procedure with any
curve, where the total normal twist is a rational multiple of 2re, and with a suitable
normal vector such that the construction will avoid singularities, we get a curve
exhibiting Z, as its group of tangential symmetries, where n is the number of periods
until the trace of the end point of the vector will provide a closed curve.

This gives a fairly clear picture of space curves admitting this kind of symmetries. But
there are other advantages related to the visual perception of these curves. There is an
obvious one, coming from the kinematic interpretation of the parallel transfer in the
normal bundle of a curve. Consider a normal frame as a rigid two-dimensional figure,
moving without acceleration freely along the curve, with the constraint to remain in the
normal plane forever. Then the motion will be described by the parallel transfer in the
normal bundle of the curve. Hence, considering the intersection of a tangentially
symmetric curve, having Z, as its symmetry group, with its normal plane as the vertex
set of a regular n-gon, this motion of the frame along the central curve will preserve this
figure after one period, though a permutation of the vertices may have happened.

Interpreting the original curve as a figure located on a tube around the central curve, it
carries information for the visualization of the center curve as follows: The tube may be
taken as a more solid image of the center curve. The twist of the center curve may be
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visualized by drawing families of curves on the surface of this tube. The most
appropriate curves for this will be those obtained by parallel transfer in the normal
bundle of the center curve, and they will be closed curves only, if they exhibit a
tangential symmetry. Clearly, then the surface of the torus bounding the tube can be
foliated by curves with this kind of tangential symmetry. Furthermore, if another profile
than a disk should be taken to thicken the center curve to a solid body, this only will be
possible if the tangential symmetry of the original curve is respected by this profile.
This can be observed in many images where closed space curves are displayed.

The more restricted form of tangential symmetry which is given by the notion of
transnormality has been studied by M.C. Irwin [I], and several geometric results have
been obtained for them in [W4]. Within the current context the only interesting result is,
that in this case the symmetry group can be Z2 only, and that overmore the central curve
cannot avoid singularities. There are no further conclusions than those of the preceding
paragraph resp. preceding section for this case.

There also are a lot of considerations concerning tangential symmetries of curves in
higher-dimensional spaces. In particular, the case of Minkowski 4-space is of special
interest for Relativity. But this is beyond the goal of this presentation.

4. THE CASE OF SPATIAL POLYGONS

For simple explicit constructions and examples the analytic techniques behind the
theory presented above will be an essential obstruction. The theory may be reduced to
CJ-curves which are piecewise C2, and then there is a gateway for considering curves
composed of pieces of circles with CJ-matchings for these pieces. Here everything can
be reduced to the consideration of a finite set of data given by the finte number of
circles in space. But the whole theory even can be broken down to the level of spatial
polygons, and this opens a wide field for nice constructions which everybody can
pursue on his own. Here just this concept should be presented in analogy to the
preceding section, leaving explicit constructions to the reader,

Two simply closed polygons in space are called parallel, if there is a bijection between
their vertices, mapping consecutive vertices to consecutive ones again, such that the.
angle-bisecting planes at corresponding vertices coincide. (It should be noted that this is
more restrictive, than assuming that corresponding line segments are parallel.) A system
of normal vectors to the edges of a polygon is called a parallelfield ofnormals, if every
two vectors belonging to edges with a common vertex are symmetric with respect to the
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reflection at the angle-bisecting plane of the polygon at this vertex. Then parallel
polygons are related by a parallel normal vector field (of constant length) again. A self-
parallelism or tangential symmetry is just a combinatorial automorphism of the
combinatorial structure behind the polygon, such that the original and the relabelled
polygon are parallel.

Furthermore, if a closed polygon possesses a non-trivial self-parallelism, then its total
normal twist (which is defined in obvious analogy to the smooth case) vanishes mod 2re.
We have the same kind of classification for tangentially symmetric polygons like in the
smooth case: i) Assume that the polygon P in E3 admits a parallel section in the normal
bundle of its k-fold covering, then the obvious construction of a parallel at suitable
distance has Zk as its group of self-parallelisms, ii) Viceversa, every polygon possessing
more than one self-parallelism can be obtained by the preceding construction from a
suitable central polygon.

Details for these considerations can be found in [W5]. Very explicit calculations in the
case of spatial quadrilaterals as center polygons have been obtained in [W6]. Everything
can be reduced to the framework of elementary Euclidean geometry in 3-space.
Examples of self-parallel polygons, which are not restricted to a plane, start with 8
vertices at least. Those with 8 vertices bound a PL-Moebius strip, and the central
quadrilateral has to satisfy very special constraints for its angles and side lengths.
Constructions with pentagons as central polygons are easier to visualize. They provide
very simple families of imbedded PL-Moebius strips having a bounding polygon with
10 vertices, such that the strip may be composed from planar pieces of constant breadth.
This is the case of symmetry group Z2,

For symmetry group Z4 and a center quadrilateral we receive recipes for composing four
bars with the same square as their profile, such that the result will be a skew frame and
such that the edges resulting from the bars form one connected closed polygon (with 16
vertices). The common picture frames have a planar rectangle as their basis, and the
edges coming from the bars decompose into four rectangles of different sizes. It is easy
to produce wooden models for these skew frames also by cutting the bars into pieces of
appropriate lengths, such that planes for the sawing have the right angle with respect to
the center line of the bar. Comparing this model with other models of compositions of
four bars of variable rectangular profile to a skew framework, the symmetric
construction will really appear as the most symmetric (and appealing) solution.
Anyway, there will be no other solutions having a square as their costant profile.
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The same will be true for other groups of tangential symmetries, only the regular
polygon for the profile will change. Hence there will be a more simple solution for Z3
than for Z4, but for building a model, it will be easier to get bars with a square profile
than with an equilateral triangle. For rectangular profiles which are not squares, the 7-,2
models will be good solutions, but then the boundary polygon will decompose into two
linked octogons then. Finally it should be observed, that these construction also may be
of interest for non-closed polygons: They will provide a solution of the problem to
connect two planes in space with bars of the same (regular or semi-regular) profile, such
that the starting point and the end point of the connection may be prescribed, the bars
start resp. arrive in normal direction at the planes, and the resulting framework fits
properly to a polyhedron, i.e., the matchings are done face to face without any
prominent pieces.

Conclusion: The preceding considerations show, that a rather general concept of
symmetry for curves in the plane and in 3-space leads to interesting versions of visible
symmetries for them. These symmetries motivate in many cases why these curves are
preferred for applications and for geometric constructions.
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