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Abstract: The geometrical interpretation of natural number’s n-th power series
summation is presented by the superposition of the j-dimensional lattice of hyperspace
regular simplexes, c~j in which ctj4 stacks with a linear increment weight of the lattice
points. The superposition of ~ is carried out every (j+l) times rotation around the
(j+l)-fold axis of ~j. The superpositions result in homogeneous density in ctj. The
recurrence formula of sum of the power series of natural numbers is presented using the
mean value of the superposed weight of the lattice points in the etj.

1. INTRODUCTION

Some geometrical interpretations of natural numbers’ n-th power series summation were
presented for n = 1, 2, 3 (Gardner 1986). On the other hand, a geometrical properties are
discussed for second moment of inertia of aj Voronoi cell around the origin (Conway &
Sloane 1993). However, a geometrical interpretation of generalized number theory
using ~zj has not been proposed so far as the author is aware. In this paper a new
geometrical scheme for the sum of the n-th power of natural numbers n = 1, 2, 3 is
presented by using the geometry of the closest packing of circles (1- and 2-D cases) and
that of spheres (3-D case) which is called face-centered close packed structure (Conway
& Sloane 1993). As Coxeter pointed out, any j+l points with equal distance between
any two points which do not lie in a (j-1)-space are the vertices of a j-D simplex, as
point ao, line-segment ~zl, regular triangle ~z2, regular tetrahedron ~z3, regular pentatope
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regular simplex aj (Coxeter 1973). It is shown that higher-order power series of
natural numbers can be obtained by considering further extension of the dimension,
namely the lattice points in the hypersimplex

2. CASE STUDY OF SUPERPOSITION OF SIMPLEXES IN 1-D
TO 4-D

First, the geometrical interpretation of the sum of low-dimensional (n = 1, 2, 3) power
of natural numbers is presented concretely. Consider 1-D lattice L1 with linear
increment weight 1, 2, 3 ...... n on the lattice points. Let R(O) be the rotation operator
of al with rotation angle 01 around the [1, 1] zone axis in the 2-D square lattice, al
operated on by R(01) becomes al(01), if al is rewritten as al(0), then

a~(01) = R(O~) . a~(O).
The superposition of al(Ol) + al(0) is represented as

$1 ¯ al(0) = {R(01) + I} ¯ al(0)

(1)

(2)
where $1 is the superposition operator and I is the identity operator of at(0). In the 1-D
case 01 is restricted to ~r, then

cos 0~ = -1                              (3)
S1 = R(~) + R(O) = R(zc) + I (4)

The weight W1 of all the lattice points. S ¯ al(0) is the same weight WI = n as shown in
Figure 1.

0. I, 2, .4- n-2, n-l, n

n, n.- J., n-2, *l 2, 1, 0

Figure 1: Line segment a~ with linear increment wmght and superposed al w~th homogeneous density n.
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If aa(0) has nonlinear increment weight, Sial(0) should have an inversion center or 2-
fold rotational symmetry, but it has homogeneous density Wt = n for at(0) with linear
increment weight. Let the number of lattice points of at be l~ and the multiplicity of
superposition be M1, so li = n + 1 and Ml = 2 for two superpositions.

The mean mass of S ¯ at(0),

/t=n+l W~=n -- llW~ 1M~ = 2 m1- - n(n+ l). (5)
M1 2

m1 m is equal to the mass of L~(O)m~, since the weight of the k-th point is k and the
number of k-th points lo is 1,

lo = 1 ml = Z k ¯ lo. (6)
k=0

Therefore,

k=l

Hereafter the notations of aj, S~, Wj, M~, lj, m and mj are introduced forj-D parameters.

2n 2n 2n 2n 2n 2n

Figure 2: Regular triangle a~ operated on by 0, 2zc/3 and 4~r/3 rotations and superposed az with homogeneous
density 2n. Stacking layers of line segments cq wxth linear increment weight are shown by black circles.
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Second, consider 2-D lattice ~2(0) which is the stacking of al(0), the length of which
increases linearly as shown in Figure 2 to form a regular triangle lattice ~2(0). The
superposition is applied to a2(0) in the same way as in the 1-D case. RO2 is considered
using the [1 1 1] plane of the cubic lattice in the first quadrant which takes the form of a
regular triangle. The superposition could be performed every 2zd3 rotation successively
around the [1 1 1] axis through the center of gravity of a regular triangle, that is,

cos 02 = -1/2 (8)
s~. c~ffo) = (R~(~)+ R(~) +I}. ~ff0). (9)

Here R2(02) is equal to R(202), thus

(lO)
For $2, three superpositions of a2(0), a regular triangle with homogeneous density is
obtained as shown in Figure 2; here,

1
~=o (11)

are given as shown in Fig.2. The mean mass of Sz ¯ az(0) is

(12)

The number of lattice points on the k-th layer line-segment in the triangle az(0) is lz and
each lattice point of l2 has unit weight, thus

k n n

to=O I:=o ,~=0 (13)
’~ 1= + +

(14)

Third, consider 3-D lattice a3(0) by analogy with the 2-D lattice. A regular triangle of
az(O) in 2-D space corresponds to a tetrahedron in which a face-centered close-packed
lattice is formed. This geometry of a3(0) in a regular tetrahedron is interpreted as n
stacking layers of a regular triangle of az(0). That is,
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n,

n n 0 n n 0 n n

3n 3n

Figure 3: Regular tetrahedra (aa) operated on by 0, 03, 20a, 303 rotations (cos 03 = -1/3) and superposed m
with homogeneous density 3n. A sense of stacking layers of regular triangle (a2), with increment weight is

denoted by arrows

Thus, the mean mass of $3 ¯ a3 is
l~W~TI~’3 ~ M3 + + B)(= +

(16)

Let the number of lattice points in the k-th stacking layer be 12, and the weight of all the
lattice points in the k-th layer be k, then

~=~ ~=o ~=o ~=O~o=O ~=o- (17)

From equations (14), (16) and (17),

(18)
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As for R(03), consider the rotation of a tetrahedron in 4-D space, because it is more
comprehensive to select the rotation about any plane including the [1 1 1 1] axis in 4-D
space than in 3-D space. Four kinds of tetrahedra obtained for every rotation by the
tetrahedral angle are superposed as shown in Figure 3.

cos 03 = -1/3                              (19)

(20)

where 03 is equal to the tetrahedral angle.

,~...-~ I \ ~...,,o/ L \ "~ ./ / \ "--..,,,~/" / \ ".-.,,,,Z__L_L___~o
"      1 ~

4r~~
4n x~.

Figure 4: Regular pentatopes cu operated on by 0, 04, 204, 304 and 4~4 rotataons (cos ~4 = -1/4) and
superposed ~ with homogeneous density 4n. Sense of increment weight ~s denoted by arrows.

The practical examples of the l-D, 2-D and 3-D superpositions of the lattice facilitate
deduction of the 4-D and higher-dimensional geometry by analogy. It is necessary that
the figure used for the superposition have a high rotational symmetry for the purpose of
getting a homogeneous density. A regular polytope (regular hyper-simplex), a~., is
available to satisfy such a condition.

In the 4-D case five regular pentagonal simplexes an are considered as superposition
simplexes as shown in Figure 4. Stacking illustrations of j-D simplexes in j+l
dimensional spacej = 2, 3, 4 are shown in Figure 5.
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1-D a I Line Segmeat Stacking of point a o)

2-I3 a._ R, egular Triangle

3-D a ~ 1~egul~r Tetrahedron

~ tackiag of line segment

k

~ tacldng of regular triangle ( a ~.)

4-D a ~ Regular Pentatope Stacking of regular tetrahedron ( a .)

Figure 5: Stackmg illustration of aj.~ in a~. Stacking of line segments (a,) in regular triangle (a2). those of a~ in
regular tetrahedron (a3) and those of a.~ in regular pentatope a4.
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3. DERIVATION OF ms, mj

The sum of 1st, 2’‘0 and 3’a power of natural numbers is derived by the superposition of
line segment, triangle and tetrahedron, respectively. Here, considerj-D simplex aj; since
aj is composed of n stacking layers of aj.~ and all lattice points in its k-th layer lj have
the same weight k, Ij.n is represented as follows.

ld,n = £/1-1,k
k=0

(21)

where lj.l,k is the lattice point of the k-th layer with linearly increasing weight in the

The j-D mean mass, rn/ , is deduced as follows from the superpositions of the 1-D to

3-D regular simplex; here Ij is a lattice point in

1
M) =j+l, lj = ~(n+l)(n+2)...(n÷j-1)(n+j), V~ =in

lj Wj j
2) (n j)~ = M~ - (j $ i)in(~ + ~)(~ + ’ +

The p~ameters of superposed hyper regul~ simplexes ~e summarized in Table 1.

(22)

(23)

1

2

3

4

n n+l 2

l(n + 1)(n + 2) 32n ~

4~ !(,~ + 1)(n + 2)(,~ + a)(,~ + 4) s

jn ~r(n+l)(n+2)...(n+j) j+l ~n(n+l)(n+2)...(n+j)

Table 1: Parameters of superposed hyper regular simplex
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On the other hand, mj is formulated by stacking of the layers of (]-l)-th regular
simplexes with weight k in each layer of thej-D space. Forj > 2,

In order to obtain the summation term of the right side of equation (24), consider the
product function f~(x),

(25)

From equation (25),

f~+t(n)--f~+~(n- 1) = (r~+ [)(n+2)...(n+j)-n(n+l),.(n+j- l) = jfj(n). (26)

Therefore,

1~
~’~ (~)= ?~i’~’~.+~(~)- .f,+~(~ -

1 (~ + j)!= 1-:{fj+t(n)- fj+t(-1)} -- J rt!
(27)

Consequently,

~(~: + J~)(~ + 2)..(~ + ~ - ~) = j
(28)

can be obtained. Here, another product function 4xf~(x) is introduced in order to
represent the right side of equation (24) by the parameter n. Equation (29) is derived
easily in the same procedure as obtained equation (28).

Ek(k + l)(k + 2) . .(k + j -1) = (j+l)
(29)
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Substituting the right side of equation (29) into equation (24), equation (30) is obtained.
~ j    +~)(~+~) .-(~+j).! ~)~(~ + t)(~+ ~)... (~ +i - ~) - (~. _~ ~)! (~ -

(30)

Thus ~j = m~ is confirmed by the geometrical interpretation of the superposition of the
regular simplexes. The relation is derived from ~j = mj as shown in equation (30).

Equations (23) and (24) are verified by mathematical induction using the stacking
geometry. Let the number of lattice points in the k-th layer of (.j-1)-D be lj_l,k as given in
equation (24), in which all lattice points have the same weight k. lj,k is derived as
follows using equation (28).

1= -fi(k + l)(k + 2) . . . (k + j), (j>2)
(31)

Then,

k
~ t~, (1’ i)(l’+2)...(I’+j!= ~ (j - + 2)

= E~k(~ + 1)(~ + 2) ¯ ¯ ¯ (k +j - 1)

_ (j + 1) n(n + 1)(n + 2)..- (n +j + 1),
(j + 2)! (32),

therefore, equation (23) holds for (]+I)-D mass. Here, considering the expanded form of
equation (30), the sum of j-th power of natural numbers is represented as a linear
combination of sums of (/’-l)-th~2"d power of natural numbers k as follows.
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= ,-:---.--n, n + 1)(n + 2),.. (n + j) --
~     (3 + I) ’

-{1.2+1.3+, +2 3-t-2 4+ +(j -)(.7 1)}EkJ-~
k

-{1.2.3 ÷ 1-2.4+., .+2.3,4+2.3.5÷ ...÷ (j-3)(j-2)(j - l)}~k~-’~

....... (~ - llt~, (~ _> ~).
k
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(33)

The coefficients of sums of powers of natural numbers in the right side of equation (33)
are given by the sum of combination products, j-IQ, j-IC2 ..... j-ICj_~ of natural
numbers 1, 2, 3 ..... j-1.

4. PROJECTION MATRIX FOR ROTATION    ANGLE    OF
SUPERPOSITION

The rotation angle in the superposition operator is determined using body diagonal
projection of a hypercube from j-D to (j-1)-D space. Consider a projection of an
arbitrary vector of hyper cubic lattice a(al, a2, a3 ..... aj) along j-D projection vector
P(Pl, P2, P3 ..... pj). Here projected vector a ± is given by

P
(34),

where ~ is a unit vectors along p and 0 is an angle between p and a, then a ± is

written as

p(p. a)
a_L =a

(35)

The geometry of a projection along p ± is shown in Figure 6.
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P- .--~. lal cos 0

Figure li: Geometry of j-dimensional orthogonal projection of a to planenormal to projection vector p(p~, p2,

p~), a 2_ and plane para|M p, all

Geometry of j-dimensional orthogonal projection of a to plane normal to projection
vector P(Pb P2, P3 ..... pj), a ± and plane parallel to p, a II, j-D orthogonal base vectors ai
(i = l-j) and projected vectors a 2_, are introduced wherep ± is given by equation (36).
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(36)

Substituting (36) for (35), a, (i = l-j) and projected vector a ±,
projection is formulated,

A±=P±.A

are introduced and the

(37)

where column vectors of A ±, A[I and projection matrix P ± are given as follows.

~,~.

a2
a3

(38)

[P[~ - P~, -P~P~
-p~p~, [p[~ - p], -p~pz,
-pzp~,    -pzp~, ]pl~ - p~,

-P~Pi-~     -PH~i
-P~Pi-~,     -P~P~
-P3Pi-~,     -PaP~

1

-Pi-~P~ -Pi-~P:, -P~
2-PiPt, -PiP~- Ip[~- - Pi

ip[~- ~
--PiPJ-I,

(39)

The projection of PII is obtained in the same way as that of P±. That is, a is
decomposed into all and a ± orthogonal to each other. Then PII is derived easily from
the following relation.

A II + A ± = A (40)

All + PII .A (41)
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Substituting (37) and (41) into equation (40) then,

PII +P ± =I (42),

where I is the unit matrix. The conditions of the projection matrix are satisfied as shown
in equation (43),

pa-L =P ±, pall =Pll, P _L "Pl[ = 0 (43)

where 0 is the zero matrix.

5. DETERMINATION OF ROTATION ANGLE FOR aj
SUPERPOSITION
First, consider a basis of projection axes ofj-D hypercubic lattice to (j-1)-D space. If the
body-diagonal axis [1, 1, 1, 1 .....1, 1] is chosen as a projection axis, the angle between
any two basis vectors from center to vertex ofj-D hyper regular simplex (%) is an equi-

solid angle. This can be proven easily ~3ing the scalar product of two projected vectors
presented by equation (37). Setting projection axis ( p~’ P2, P 3 ..... P j-l, P j) in

the orthonormal system as follows,
1

Pl = Pz = P3 ..... Pa-I = Pj = ~j. (44)

substitute (44) into projection matrix (39), then body-diagonal projection matrix (45) is
obtained as follows.

(45)
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The rotation angle 0j.~ for superposition of hypersimplexes corresponds to the equi-
solid angle between projected basis vectors fromj-D to (]-I)-D space. Oj.~ is determined
by a scalar product of any two projected basis vectors, A
(45).

(a.l_i , a.l.i,)coscj_~ - la±,l" la~_.l j - 1

,, A ± ,,, obtained by equation

(46)

The verification of equation (46) is given in the case studies ofj = 2, 3 and 4, as shown
in section 2. That is, cos¢l =-1, (¢I =7~), cos¢2=-l/2,(¢2=2z/3) and
cos¢3 =-1/3, (¢3 =109.47 deg: tetrahedral angle) are presented as a unit step of
superpositional rotation angle for l-D, 2-D and 3-D, respectively. In general, a body-
diagonal projection of a hypercube from j-D to (j-1)-D space generates a (j-1)-D
hyper regular simplex which has j-fold rotational symmetry as viewed from

[1, 1, 1, 1 ..... 1, 1]. The j-fold rotational symmetry of the hyper regular simplex is
confirmed by considering the superposition operator S~. Sj can be represented as follows.

s~ = 1~ ( ~) + Rs-~(¢~) +..-+ ~t(¢~) + I
= R(j¢j) + R{(j -1)¢j } +. . . + R(2¢j) + R( ~) + I (47)

Equation (47) is equivalent to equation (48) by the Hamilton-Cayley theorem.

R0+l)(o.t) = I (48)
Equation (48) means that the (]-I)-D hyper regular simplex has the j-D hypercubic
body-diagonal ax~s in the form of a j-fold rotational axis. Ifj approaches infinity, cos Oj
converges to 0, then the projected vectors inj-D space approach an orthogonal system.

6. CONCLUDING REMARK

A geometrical interpretation of the sum of the j-th power of natural numbers is
presented and visualized by considering the superposition ofj-D hypersimplexes which
are generated by every rotation by angle 0j about the body-diagonal axis of a (]+I)-D
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lattice. The expanded form of E kJ have already been formulated usinghypercubic
k=lBernoulli polynomials. The relation between the expanded form given in reference

(Moriguchi 1957) and that in this work will be discussed elsewhere. This work is partly
supported by the Special Coordination Funds for Promoting Science and Technology
Agency of the Government of Japan.
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Symbol ,’vIeaning

j-dimensional hypersimplex at ¢s position
Number of lattice points m k-th layer of c~i (6j)
Rotation operator of %
Identity operator of a]
Superposition operator of ct, i (¢j)
Rotation angle for superposition of as
Weight of lattice points of superposed a~
Multiplicity of superposition of %,
Mass of %
Mean mass of superposed a:
Ordimd layer number of stacking c~i
Natural number
Arbitrary vector of hypercubic lattice
j-dimensional projection vector
j-d~mensional projection matrLx of p
j-dimensional projectio~ matrk’~ of a perpendicular to Px
Projected vector of a along p
Column vectors of a
Column vectors of all perpendicular to a±
Angle between p and a


