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Abstract: Cell signaling is the fastest growing subject in biochemistry yet no general
mathematical principles have been found to decipher a "language" of cells using the
discrete positional approach (Shannonian Information Theory does not appear to
provide a workable framework), lnstead, cellular information may be compositional,"
messages are exchanged as the presence or absence of symbols and few meaningful
positional relationships are involved Here we introduce a new informational grammar
using uni- and multi-dimensional partitions that may help us to better understand signal
processing in the eukaryotic ceil.

1. INTRODUCTION: POSITIONAL VERSUS COMPOSITIONAL
INFORMATION

The notion of a "language" of cells does not seem consistent with the standard views of
Information Theory applied to biology. Although Shannon (1949) distinguished between
discrete, continuous, and mixed information sources, the standard application (and
possibly overextension) of his ideas to cell biology have been heavily influenced by the
sequential structure of DNA and RNA and, traditionally, only the discrete-positional
case has been considered (e.g., Gatlin 1972, Schneider 1995). As a consequence, the
lack of distinction between "positional" and "compositional" forms of information and
the subsequent neglect of the latter have implied an analytical dead-end concerning the
possibilities of elucidating formal mechanisms of cellular languages.
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The assumed preconditions for information transmission, and particularly for any
workable language, refer to sequences of messages containing combinations of symbols
which are deciphered or transmitted always following a positional order (only broken for
crytographic purposes - Pastor and Sarasa 1998). Shannon’s formula appears to be the
natural way of measuring the average combinatory content of these positional messages
and of establishing their relative index of surprise in order to design appropriate
channels, codes, etc. Subsequently, a workable language can be created by following a
set of grammatical (Markovian) rules to connect successive positional messages
comprised within the dictionary scope of the language.

However, one can point to a number of instances in natural and social communication
where symbols are used in a rather different way. Instead of a "positional" context
(which also generally implies the assumptions of sequence, stability and hierarchy - see
Mariju~in and Villarroel 1998) symbols may be used in a "compositional" way. In this
alternative context, messages are exchanged as presences or absences of symbols which
have been accumulated upon predetermined sets of objects. No meaningful positional
relationships are assumed among the objects within the set or among the symbols
accumulated on these objects. For example, several glasses on a tray may contain a
variable number of different symbolic items (ice cubes, soda, vermouth, olives,
cherries). We may consider the set of glasses on the tray as the message, each glass
being an individual object that accumulates several symbols which make it
distinguishable. Then two subjects could communicate by exchanging trays with a
variable number of glasses and contents (Marijufin and Pastor 1998). That messages can
be reliably distinguished and transmitted by the "concurrent processing of discrete states
of media", has already been postulated by Karl Javorszky (1995). A whole body of
partitional calculus (or granularity algebra) has been envisioned by this author
(Javorszky 1995b, Steidl and Javorszky 1996). Interestingly, partitional reasoning has
also been applied to problems in pattern recognition (Frigui and Krislmapuram 1997),
logic (Mosterin 1987, Modica and Rustichini 1994) and even economics (Caianiello
1985).

Biological examples of compositional information exchanges may be found in the
communicational use of colors, odors and tastes. We may also consider pheromones in
social insects and, anecdotally, the etiquette "language of flowers", and perhaps even
musical compositions and the formative frequencies of vowels and consonants of our
own spoken languages. The "language of cells" we shall discuss here may be one of the
most interesting instances of communication by means of such compositional tools; and
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it has been the forerunner of all further means of biological communication.
Marshall McLuhan’s famous dictum "the medium is the message" and the particular
disdain this author showed about Shannon’s information theory (McLuhan 1962) are
worth recalling when considering this fundamental distinction between positional and
compositional forms of information exchange.

2. ANALYZING A COMPOSITIONAL MESSAGE
2.1 Unidimensional Partitions

The theory of compositional messages is formally based on the partitional-additive
properties of natural numbers. Following this theory, messages are distinguished and
analyzed by measuring the relative frequency of partitions in the overall structure of the
message. Mathematically speaking, partitions are a very straight forward concept, i.e.,
the additive decompositions of natural numbers. For instance, the set { (5), (4,1), (3,2),
(3,1,1), (2,2,1), (2,1,1,1), (1,1,1,1,1) } represents all the unidimensional partitions of the
number five. By adhering to this mathematical treatment, one can use the well-known
partitional properties of numbers to discuss the most probable logical states of a
compositional message entrusted upon the elements of the set N.

Compositional messages have to be mapped onto a different kind of state space, where
what counts (what generates dynamics) is the absence or presence of specific symbols
on a set of N elements. When receiving a compositional message, the presence of the
different symbols on each element of the set has to be counted and grouped in
homogeneous classes of overlapping or non-overlapping nature. For instance, the
message of Figure 1 generates the following partitions of 5: hearts (3, 2), spades (3, 2),
clubs (2, 2, 1), diamonds (3, 1, 1).

Each class is defined by the presence of a specific symbol, and this symbol effectively
creates a partition of the set of N elements. After the classes are defined by single
symbols, the more complex coincidences of combinations of symbols (class overlaps)
among the elements can also be considered. It can be easily proved that, in the first case
of linear of unidimensional partitions for single symbols, all the possible countings of
symbolic presences among the N elements of the set lead to the whole set of partitions of
N, called E(N). The successive consideration of two, three, four symbols, etc. can then
be considered multidimensional partitions and their mutual coincidences would generate
families ofunidimensional second, third order partitions, etc.
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Message set: the five slots
Elements: each one of the slots
Symbol: the distinctions of each cube
Object: one slot with the symbols on it
Sign: the group of symbols on the element

Figure 1: A Compositional Message - An xndefinite number of symbols (taken here from a "jar") are placed
upon the discrete elements that make up the compositional message No positional relationships of order are

involved.

It is worth noting that, whereas Sharmonian entropy increases with the total number of
symbols, partitional entropy reaches a limit. Thus, not only do partitions convey the
abstract "form" of messages but they establish boundaries on the state space of possible
messages using three important logical principles that characterize this approach:

The Principle of Parsimony precludes the addition of a symbol different from those
already present if that symbol does not introduce further distinctions. It follows that a
maximum of N-1 different symbols may accumulate on a single element,

e.g., the message [AXYZH, A, 0, 0] = [AB, A, 0, 0]

The Principle of Economy precludes the addition of a symbol the same as those present
if this symbol does not introduce further distinctions (redundant symbols on all objects
will not be perceived by the receiver). It follows that, a maximum of N-1 equal symbols
may accumulate on a single element,

e.g., the message [AAA, AA, 0, 0] = [AA, A, 0, 0]
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The Principle of Symmetry precludes the distinctions derived from the mutual exchange
among symbols. So, commutative relations apply among the set of symbols,

e.g., the message [AB, AA, B, 0] = [AB, BB, A, 0]

2.2 Kmax- the most probable partitional state

After the above principles have been applied, the set of partitions E(N) can be
immediately transformed into a probability body (for the unidimensional case). The
probability of any state of the set to exist as described by a specific partition is given by
the relative frequency of this partition among all partitions. For instance, on E(5) the
probability is 1/7 - for states (5), (2,1,1,1) and (1,1,1,1,1), 2/7 - for states with either 2 or
3 summands each, 15/20 - for any summand to be an odd number, etc.

E(N) is obtained by Ramanuyan:

(see Javorszky 1995)

The partition with the highest relative frequency is called the Kmax. In this most
probable partitional state, the set shows Kmax distinct sumrnands with respect to a
one-describing dimension. In the case of E(5), there is a Kmax shared both by
2 { (4,1) (3,2) } and 3 { (3,1,1) (2,2,1) }.

Heuristically, it appears that a compositional message can be univocally described by its
corresponding "trace" of unidimensional partitions (Steidl and Javorszky 1996), if a few
additional statistical measures that act as a sort of context or shared background in the
communicational process have been previously established: most probable message
length, ratio of symbols/elements, structural depth, shallowness, etc. Then the possible
use of partitions of further combinations of symbols becomes redundant - and its
inclusion would notably complicate the mathematical description of the message. Only
the unidimensional-multidimensional problem may be pertinent.
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The Kmax of every property or symbolic presence may be used as the origin or natural
cannon to which the respective deviations of successive messages can refer. Krnax is the
main message. Therefore, the information in a complex compositional message is
represented by a comparatively small collection of distinguishing maxima instead of an
overwhelming collection of symbols (and their permutations and combinations) that
make up the message. The Kmax of a message would represent a natural property to
which successive messages can refer. This simplifies the description of a specific
message in the context of a continuous communication process and may speed up the
process while diminishing errors.

2.3 Multidimensional partitions

Karl Javorszky (1995) has argued that an efficient massively parallel communication
procedure - using multidimensional partitions - can be built around minimized
partitional traces of the above Kmax. It seems to work particularly well with data sets of
moderate size, which are preferably prestructured and come in a quasi continuous
stream, so that the number of possible symbols is always kept rather finite. Although
symbols might come from an infinite multitude, there should be a relatively small
collection of distinguishing items employed at the communicationat session, and their
group relations should not generate a cardinality overstatement symbols/elements above
a certain limit.

To the extent that Javorszky’s estimates are correct, the overall capacity of a
multidimensional compositional channel making use of discrete states of media can be
generically expressed as:

T(N) = E(N) exp In E(N),

where T(N) is the number of different logical states which can be distinguished by means
of collections of symbols put on the elements of the set N. Only non-redundant states are
counted (see the principle of economy), because redundant symbol groups can always be
substituted by single symbols, coalescing into a unique logical state. E(N) is the already
mentioned number of unidimensional partitions of the set N.

It is also interesting to compare T(N) and the strictly positional use of the same elements
of the set N in a combinatory way. According to the positional approach, a total
of N! different messages or logical states can arise using the same elements.
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Surprisingly, T(N) yields a larger number of logical states than N! for values of N in
between 31 and 95, with a maximum around 63-64. However, for N=12, the number of
combinations N! reaches a maximum with respect to T(N). Apparently, several
parameters of the genetic code would correspond with such max./min, extremes that
characterize the compositional-positional interrelationship (see Javorszky 1995, for a
detailed expression of all these formulae and calculations). Even a cursory analysis of
the multidimensional partitions for N=3 and N=4 shows the emergence of an intricate
"geometrical" (compositional) realm where symmetry patterns can be replicated by
means of partitional operations (Villarroel, Pastor and Mariju~in, in prep.).

2.4 The Emergence of Power Laws

Numerical partitions are characterised by exponential growth, and, heuristically,
compositional messages have elements which are, by their very nature, contingent. The
set seems to follow power laws and thus be vulnerable to small changes (Bak 1996). It is
worth noting that a very simple way to obtain a power law is by the superposition of the
whole partitional summands of a given number. We have graphed numerical partitions
up to 20 (see Figure 2) and, except for some interference in the frontiers of the numeric
interval, every summand’s relative presence cleanly depends on a power law (Marijufin
and Villarroel 1998). We have yet to solve for the general expression of the exponent of
the power law which may describe partitional growth.

The power law theme leads towards a physical paradigm that apparently shares basic
formal properties with the above compositional dynamics: self-organized criticality. The
generalization built upon the well-known sand-pile paradigm that seems to apply to
numerous natural phenomena (geologic, chemical, physical ones), leaving the
characteristic signature of "power laws" in the involved structures and processes (Bak
1996), could also apply to the critical exchange of compositional messages that
biosocial informational entities are collectively orchestrating by means of their
communicational activities superimposed upon the structural ones... The fact is that
power laws are omnipresent in cellular, organismic, economic, and social realms too
(Scarrott 1996; Bak 1996; Mariju~n 1998). Inescapably, this biologically-inspired train
of thought on compositional messages has to be linked not only with self-organized
criticality but also with the engineering-inspired views of G. C. Scarrott on "recurrence"
(and related power laws) postulated as one of the basic tenets of natural information
systems.
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Summand S

Figure 2: Power laws in partitions. Each curve stands for a particular value of N starting from 1 until 20.
The ordinate represents the number of times each summand appears tn the total partitions of each N.

The x-axis represents the summand S

N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 115 16 17 18 19 20
S
1 1
2 2 1
3 4 1 1
4 7 3 1 1
5 12 4 2 1 1
6 19 8 4 2 1 1
7 30 11 6 3 2 1 1
8 45 19 9 6 3 2 1 1
9 67 26 15 8 5 3 2 1 1
10 97 41 51 13 8 5 3 2 I 1
11 1.’]P 56 31 18 12 7 5 3 2 1 1
12 195 83 45 28 17 12 7 5 3 2 [ 1 1
13 272 112 63 38 25 16 11 7 5 3 !         21 1
14 3"/!1 1~ 87 55 35 24 16 11 7 5 3 2 1 1
15 508 213 122 74 50 33 23 15 11 7 I    5 3 2 1 I ~
16 6~1 295 164 105 68 47 32 23 15 11 17 5 3 2 1 1

I1, 1 7 5 2 1 117 915 38;* 222 1.30 94 63 45 31 22 15 3
18 1212 ~6 2;8 1$0 1~5 89 61 44 30 22 15 11 7 5 3 2 1 1
19 l~g’/ 1~6 395 2~ 1~ 117 84 59 43 30 22 15 11 7 5 3 2 1 1
20 21387 911 5L9 326 2~ 159 112 82 58 43 30 22 15 11 7 5 3 2 1 1

3. A PARTITIONAL APPROACH TO CELLULAR
COMMUNICATION

How can cells reliably communicate without any consideration about positional order in
the "letters" of the chemical "words" they exchange? The experimental evidence is that
every organismic cell, and every tissue, has sculpted its own coding and decoding
apparatus, the Cellular Signaling System, basicly devoted to the analysis of
communicational concentrations found in the extracellular-intracellular milieu, i.e.,
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compositional messages. It implies the combined workings of thousands of receptors,
hundreds of related protein kinases and phosphatases, and less than ten second
messengers, all of them interconnected in order to make sense of the incoming stream of
diluted messages. A very complex array of internal states (control of functionality,
growth, cell-cycle stages, migration, apoptosis...) is regularly communicated among
cells, tissues, and organs by means of such a peculiar molecular-processing apparatus.

In the Shannonian sense, one could conceive of a superimposed state-space built out
from the whole variable concentrations that participate in the communication games, so
that message patterns would map onto cellular states or onto molecular actuators leading
to such cellular states (an automata table, or a grammar could be built). But there appear
troubling evidences. The molecular adaptation of receptors (for instance by methyl or
phosphate groups), the abundance of sigmoid curves and saturating effects, the vertical
organization of signaling pathway components in "transducisomes", and the generalized
cross talking among such pathways imply quasi-unsurmountable barriers for handling a
regular information-thermodynamic state space. The tools used to describe physical
states may not necessarily be meaningful for the description of a communicational space
in the cellular milieu (Marijufin and Villarroel 1998).

Instead of the classical analysis of DNA sequences, it seems that the natural target to
explore the possibilities of the partitional approach should be the "mysterious" processing
operations performed by the cellular signaling system. In this sense, the system of
receptors, membrane-bound enzyme and protein complexes, second messengers, and the
dedicated kinase and phosphatase chains, could be understood as an abstract partitional
processing-system capable of extracting the relative information differences within the
stream of incoming compositional messages and physically transport these differences
down to final effectors at the nucleus, cytoplasm, or membrane. That’s the basic
hypothesis that we are presently trying to explore.

If (and what a big "it") cells would make use of formal tools of logico-partitional nature in
their management by means of the cellular signaling system of the compositional
messages they receive, then the notion of a genuine cellular language, with specific
dialects for every organismic tissue, could be seriously argued. And perhaps more
interesting than that, quite a few other bizarre aspects of the signaling system could
receive some more formal (and simpler) treatment: the cross-talk between signaling
pathways, the checkpoints relating signaling operations with cell-cycle stages, the chaotic
fluctuations of second messengers, and even the widespread formation of aggregates and
complexes (transducisomes) among signaling components.
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The studies by Caianiello (1985) on the partitional dynamics inherent in monetary
systems and the suggestion by one of us (Marijufin 1998) about the "currency" role
played by the set of second messengers in the internal measurement of cellular function
might finally be stepping stones pointing out in the same direction: the foundations of
information processing in nature and society.

REFERENCES
Bak, P. (1996) How Nature Works" The Sctence of Self-orgamzed CrtticahOJ, New York: Copermcus.
Caiamello, E R. (1985) A Thermodynamic Approach to Self-Orgamzing Systems, in Yates, F E, Garfinkel, A.

, Walter, D.O., Yates, G.B., eds. Self-Orgamztng Systems, theEmergence of Order, New York. Plenum
Press.

Frigm, H. and Krishnapuram, R (1997) Clustering by competihve agglomerahon, Pattern Recognttion 30,
pp 1109-1119.

Gatlin, L L. (1972) Information Theory and the Ltvmg System, Columbia: New York.
Javorszky, K. (1995) GranularttyAlgebra, V~enna: Macklnger-Verlag
Javorszky, K (1995b) The Logic of Self-Sustaning Sampling Systems, 1PCAT95 Proceedings, pp. 386-398,

Umversity of Liverpool, UK.
Mariju~in, P. (1996) Gloom in the Society of Enzymes: on the Nature of Biological Information, Biosystems

38, pp 163-171
Mar~ju~in, P. (1996b) Information and Symmetry in the Biological and Socml Realm: New Avenues of

Inquiry, Symmetry Culture and Sctence 7(3), pp. 281-294.
Mar~ju~n, P and Pastor, J. (1998) The Language of Cells Foundatton of lnformatton Science,

http//fis.iguw.tuwein ac.athgw/fis/fis htm.
Manju~in, P and Vfllarroel, M (1998) On Information Theory Stumbhng Blocks. Some B~ological

Considerations about the Concepts of "Sequence", "Stability" and "Hierarchy", Cybernetics, in press.
Marijuhn, P C. (1998) Information and the Unfolding of Social Life’ Molecular B~olog~cal Resonances

Reaching up to the Economy, Btosystems 46, pp. 145-151.
McLuhan, M (1962) The Gutenberg Galaxy, Toronto’ University of Toronto Press
Modica, S. and Rustichmi, A (1994) Awareness and Partitional Information Structures, Theory and Dectston

37(1), pp 107-124.
Mosterln, J (1987) Conceptosy teorias en la c~enc~a, Madrid: Ahanza Editorial.
Pastor, J. and Sarasa, M A. (1998) Criptografia Digttal Fundamentos y aphcactones, Zaragoza, Spain

Prensas Umvers~tarias de Zaragoza.
Scarrott, G (1996) The purpose and nature ofmformatlon, (comm. workshop: Information, Instrument for

the Survival of Society, UK Institution of Electrical Engineers, London, October 1996).
Schneider, T.D (1995) New Approaches m Mathemattcal Btology Information Theory and Molecular

Machines. Phystes and the Origin and Evolutton of Ltfe, Trieste. Italy.
Shannon, C E (1949) A Mathemattcal Theory of Commumcatton, Chicago. University of Illinols Press
Steidl, R. and Javorszky, K (1996) Message transmisston by means of counting states of sets. Unpublished

manuscript.


