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Abstract: The Dutch artist M. C. Escher is known for his repeating patterns of
interlocking motifs. Most of Escher’s patterns are Euclidean patterns, but he also
designed some for the surface of the sphere and others for the hyperbolic plane, thus
making use of all three classical geometries: Euclidean, spherical, and hyperbolic. In
some cases it is evident that he applied a morphological transformation to one of his
patterns to obtain a new pattern, thus changing the symmetry of the original pattern,
sometimes even forcing it onto a different geometry. In fact Escher transformed his
Euclidean Pattern Number 45 of angels and devils both onto the sphere, Heaven and
Hell on a carved maple sphere, and onto the hyperbolic plane, Circle Limit IV. A
computer program has been written that converts one hyperbolic pattern to another by
applying a morphological transformation to its motif We will describe the method used
by this program.
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1 INTRODUCTION
M. C. Escher created many repeating patterns of the Euclidean plane. In a few cases he
distorted or "morphed" these patterns to obtain new patterns in other geometries:
spherical or hyperbolic. Escher’s Pattern Number 45 of angels and devils is the only one
that he converted to both the sphere and the hyperbolic plane. These three related
patterns are shown in (Schattschneider 1990) on pages 150, 244 and 296; see Figure 1
below for Circle Limit IV. Professor Coxeter discusses the three patterns on pages
197-209 of Coxeter 1981.

Figure 1: This is Escher’s hyperbohc pattern Circle Limit IV of angels
(the whlte background) and devils (foreground).

There are probably many ways to distort or "morph" one pattern into another. The
method we will describe applies to repeating patterns based on the regular tessellations,
{p; q}, composed of regular p-sided polygons meeting q at a vertex. Thus, given one
repeating pattern, we could theoretically create a doubly infinite family of related
patterns by morphing the original pattern into others based on different values of p and
q. Many of Escher’s Euclidean patterns and all of his spherical and hyperbolic patterns
are based on {p; q}. For example, his Euclidean Pattern Number 45 and the related
spherical and hyperbolic patterns mentioned above are based on the tessellations {4; 4},
{4; 3 } and {6; 4} respectively. Figure 2 shows the tessellation {6; 4} superimposed on
Circle Limit IV. In these patterns, p is twice the number of angels/devils that meet at
their feet and q is the number of wing tips that meet at a point. The meeting point of feet
is the intersection of lines of bilateral (reflection) symmetry - hence the need to double
the number of angels/devils to obtain p.
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We will begin with a brief review of hyperbolic geometry. Next we discuss repeating
patterns and regular tessellations, and the morphological transformation process,
showing an example. Finally we suggest possible further directions of research.

2 HYPERBOLIC GEOMETRY

Unlike the Euclidean plane and the sphere, the entire hyperbolic plane cannot be
isometrically embedded in 3-dimensional Euclidean space. Therefore, any model of
hyperbolic geometry in Euclidean 3-space must distort distance. The Poincarg circle
model of hyperbolic geometry has two properties that are useful for artistic purposes:
(1) it is conformal (i.e., the hyperbolic measure of an angle is equal to its Euclidean
measure) - thus a transformed object has roughly the same shape as the original, and (2)
it lies within a bounded region of the Euclidean plane - allowing an entire hyperbolic
pattern to be displayed. The "points" of this model are the interior points of a bounding
circle in the Euclidean plane. The (hyperbolic) "lines" are interior circular arcs
perpendicular to the bounding circle, including diameters. The sides of the hexagons of
the {6; 4} tessellation shown in Figure 2 lie along hyperbolic lines as do the backbone
lines of the fish in Figures 3 and 4.         ~.~

Figure 2: This is Ctrcle Ltmtt 1V showing the underlying { 6, 4 } tessellation
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3 REPEATING PATTERNS AND REGULAR TESSELLATIONS
A repeating pattern of the Euclidean plane, the hyperbolic plane, or the sphere is a
pattern made up of congruent copies of a basic subpattern or motif. For instance, a black
half-devil plus an adjacent white half-angel make up a motif for Figure 1.

An important kind of repeating pattern is the regular tessellation, {p; q}, of the plane by
regular p-sided polygons, or p-gons, meeting q at a vertex. The values of p and q
determine which of the three "classical" geometries, Euclidean, spherical, or hyperbolic,
the tessellation lies in. The tessellation {p; q} is spherical, Euclidean, or hyperbolic
according as (p-2)(q-2) is less than, equal to, or greater than 4. This is shown in Table 1
below. Note that most of the tessellations are hyperbolic. In the spherical case, the
tessellations {3; 3}, {3; 4}, {3; 5}, {4; 3} and {5; 3} correspond to versions of the
Platonic solids (the regular tetrahedron, octahedron, icosahedron, cube, and
dodecahedron respectively) "blown up" onto the surface of their circumscribing
spheres. One can interpret the tessellations {p; 2} as two hemispherical caps joined
along p edges on the equator; similarly {2; q} is a tessellation by q lunes. Escher’s only
use of these latter tessellations appears to be the carved beechwood sphere with 8
grotesques (Schattschneider 1990, p. 244) based on {2; 4}. The tessellations {3; 6},
{4; 4} and {6; 3} are the familiar Euclidean tessellations by equilateral triangles,
squares, and regular hexagons, all of which Escher used extensively.

lO
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4

1 2 3 4 5 6 7 8 9 10 11

[] - Euclidean
tessellations

0 - "’Plar, onid’
sptterJ
tcssclla,tions

o - spherical
tessellations
tbr which
p=2orq=2

* - hyperbolic
tessellations

Table 1: This table shows the relation between the values ofp and q, and the geometry of the tessellatton {p; q}.
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4 MORPHOLOGICAL TRANSFORMATION OF A PATTERN

The basic version of the computer program that performs the morphological
transformation requires that the motif be contained in one of the p isosceles triangles
formed by the radii of a p-gon. Figure 3 below shows the isosceles triangles within a
6-gon of {6; 4} that is the basis of Escher’s Circle Limit I (shown in gray). A natural
motif in Circle Limit I is composed of a black half-fish and an adjoining white half-fish,
however such a motif has part of a white fish fin protruding outside its isosceles
triangle. This motif can be modified to the required form by clipping off the protruding
part and "gluing" it back between the tail and the back edge of the fin of,the black fish.

The program has been extended slightly so that this modification is often not necessary.
The extended program also seems to work reasonably well with a motif that overlaps
two adjacent isosceles triangles (with roughly half the motif in each triangle) - as is the
case with Circle Limit IV (Figure 1).

The basic morphing process makes use of the Klein model of hyperbolic geometry. As
with the Poincar6 model, the points are interior points of a bounding circle, but the
hyperbolic lines are represented by chords. We let I denote the isomorphism that maps
the Poincar6 model to the Klein model. Then I maps a centered p-gon with its isosceles
triangles to a regular p-sided polygon which also contains corresponding isosceles
triangles. Different tessellations {p; q} produce different isosceles triangles in the Klein
model, but an isosceles triangle from {p; q} can be mapped onto an isosceles triangle
from {p’; q’} by a simple (Euclidean) differential scaling, since those isosceles "Klein"
triangles are represented by isosceles Euclidean triangles. Thus the morphological
transformation from a {p; q} pattern to a {p’; q’} pattern can be accomplished by (1)
applying I to a motif in an isosceles triangle of {p; q}, (2) applying the differential
scaling to that transformed triangle, and finally (3) applying the inverse of I to the re-
scaled triangle containing the motif. The entire pattern can then be formed by
replicating the morphed motif. Replication algorithms are discussed in Dunham 1986a
and Dunham 1986b. Figure 4 shows the result of morphing the Circle Limit I pattern to
a {4; 6} pattern- with a transformed isosceles triangle superimposed.

Using similar techniques, another program has been written to transform isosceles
Euclidean triangles to isosceles hyperbolic triangles, and thus Euclidean Escher patterns
(of which there are many) can be transformed to hyperbolic patterns.
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Figure 3: The isosceles triangles superimposed on Escher’s Circle Limit I pattern.

Figure 4: A morphed Circle Limit I based on {4; 6} showing an isosceles triangle.
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5 FUTURE WORK

Directions of future research include: (1) finding different morphing transformations,
(2) allowing the fundamental region to be a non-isosceles triangle or quadrilateral, and
(3) transforming between any of the three classical geometries. The morphing
transformation described above is not conformal. Theoretically, the Riemann Mapping
Theorem says there is a holomorphic (and hence conformal) isomorphism between the
Poincar~ isosceles triangles of any two tessellations {p; q} and {p’; q’}. A natural
fundamental region for Escher’s Circle Limit III is a quadrilateral divided into two
triangles whose sides are two hyperbolic line segments and a segment of an equidistant
curve - the above methods may extend to such triangles. Finally, transforming from
spherical to Euclidean (and hence hyperbolic) patterns would only involve finding a
mapping from isosceles spherical triangles to isosceles Euclidean triangles.
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