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THE UBIQUITY OF SYMMETRY

Everywhere we turn we can see symmetrical relationships. They are both visual and
audio, and they are so pervasive in our daily lives that one is led naturally to wonder if
the notion of symmetry is innate in human beings. It is almost as though the notion of
symmetry is built into us as a standard against which we measure aesthetic appeal to
assess both mental and physical constructs. Hargittai and Hargittai in their text
Symmetry: A Unifying Concept, illustrate how deeply seated and ubiquitous
symmetrical relationships are through hundreds of photographs of man-made objects,
from examples in architectural symmetry, to those found in nature, as exemplified by
the markings on the wings of a butterfly. The notion of symmetry is itself a
mathematician’s dream, for point and line symmetries which have been extensively
studied in their own right, have been generalized and applied to almost every area of
mathematics, even school mathematics. Moreover, entire domains of mathematics, such
as group theory have arisen out of the study of symmetry.

Algebra, geometry, trigonometry and calculus are four main areas of school and
collegiate mathematics. And in each of these domains students are introduced to
generalizations on the notions of symmetry. In algebra for example, we introduce
students to the notions of symmetric functions, symmetric determinants, symmetric
groups, symmetric systems of equations and to symmetric forms, as in the symmetric
form of the equation of a line; in geometry they meet the notions of point and line
symmetry, and n-fold symmetry. In trigonometry the students meet basic symmetric
relations like cos a = sin (90° — a) and at a more advanced level, the notions of
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symmetric spherical triangles. In elementary calculus they again see that symmetry
plays a pivotal role in applying integration techniques and in working with differential
forms. The centrality of symmetry as a notion in and of itself, not to mention its use as a
heuristic in problem solving, is easily documented in general mathematics, and in
school mathematics, too. But whether or not there is a natural, innate, gravitation
towards symmetry is an open question, although many giants in mathematics and the
physical sciences (Poincare 1913, Einstein 1935, Weyl 1952, Polya 1962 and Penrose
1974) have addressed their own propensities for symmetry and aesthetics, individually
saying that they believe it to be one of the driving forces behind their work.

SYMMETRY AS AN AESTHETIC METRIC

It is well known that there seems to be a small set of real numbers which appeal to our
psyche more than other numbers. E.g., more than a hundred years ago the psychologist
Gustov Fechner made literally thousands of measurements of rectangles commonly seen
in everyday life; playing cards, window frames, writing papers, book covers, etc., and
he noticed that the ratio of the length to the width seemed to approach the golden ratio

(= 1+£/§) .He then presented rectangles to hundreds of individuals and asked them to
choose one, with no selection criteria specified. He claims that they disproportionately
chose rectangles, the ratio of whose sides was close to the golden ratio. He then
questioned the innateness of this number in the psyche of man; a number which was
already known to be ubiquitous in nature, science and mathematics. According to
Huntley (1970), Fechner's experiments were repeated by Witman, by Lalo and again by
Thorndike, each a leading psychologist of his time, and each obtained similar results.
Huntley's listing of Fechner's data is presented in Figure 1.
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The golden ratio is a number closely tied to symmetry. The ratio is obtained as follows.
Given the line segment AB there are two special points C and D on it that divide the line
segment into the golden ratio. One of these points C is an interior point to the segment
AB. The other point D is an exterior point to the segment; i.e., the segment AB must be
extended to reach it.

i

Figure 2

The Golden Ratio 7, is defined as follows:
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Constructing the points C and D for a given line segment AB is an instructive exercise
which is closely associated with the Appolonian circle for points A and B; the

Appolonian circle is the locus of a point P such that 4P is a constant k > 0, k # 1. How
PB

do we find points C and D? With B as the center, draw a circle of arbitrary radius r; now
with A as the center draw a circle of radius 7. If these two circles do not intersect,
choose another value for the radius r, and repeat the procedure. Let the circles intersect
at P. Note that 42 = 7. Bisect Z APB internally and externally. Let the internal bisector

meet line segment AB at C; and let the external bisector meet AB extended at D. We
have now found the two desired points for the golden ratio. If the length of AB is one,

thenAC=1 CcB=_1 andBD=rx.
T 7t
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The aesthetic appeal of the golden ratio and its ties to the Fibonacci sequence, as well as
its far reaching connections to nature and science are well documented in the literature
(Huntley 1970, Herz-Fischler 1998, Dunlap 1998). But the connection of this number to
the human psyche, in the spirit of Fechner’s work with investigating our attractions
toward it, is an open question. Nevertheless, there are many aspects of symmetry which
are embedded in the golden ratio and which are instructive for students to study. (Space
limitation allows us to only mention a few.)

The two points C and D are said to divide the line segment AB into its mean and
extreme ratio — and there is no other set of points which does this. Le., there is no other
set of points X and Y on segment AB such that é‘)ﬁ - AB = ﬂ = ﬁ Perhaps the

XB AX = YB AB’
ratio is not connected to our subconsciousness, but it and its reciprocal, (,/5 -1], are
2

somehow connected to our aesthetic attraction towards simplicity and minimalism.

Hidden symmetries in the golden ratio abound. For example, 7, the golden ratio,
satisfies the equation 72-7 - 1 =0.

P77 -1=0 ler-1=0

=141 =147

1
T=1+4~- T=V1+7T
T

1 | ppe—
T:1+1—+—_l: T=y\14V1+7T
T
1
rm}-&ﬁ'—x" ¢=\/1+\/1+\/1_+_r

We now have the simplest continued fraction and root expansion known to man; each of

which can be continued on ad infinitum in a systematic, patterned way. And as soon as
one thinks of patterns, one thinks of symmetry. So here we have a systematic
(symmetric) way to represent an irrational number, that in and of itself is almost a
contradiction of terms, for irrational numbers do not have systematic decimal
representations; yet with the notions of continued fractions and infinite square root
expansions there is a certain symmetry to them.
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Whether or not we have a subconscious gravitation towards symmetry, and special
numbers such as the golden ratio, is admittedly a hazy area and perhaps best left to
psychologists to investigate. But like learning to appreciate art and music, where one
learns what to look for with respect to a painting, and what to listen for with respect to a
piece of music of a particular period, one must be taught how to look for symmetrical
relationships; gravitation towards symmetry might happen naturally, but learning how
to utilize symmetry must be taught, (Dreyfus and Eisenberg, 1990).

TEACHING TO UTILIZE SYMMETRY

At the most basic level it helps to look at texts like the one written by the Hargittais,
where the ubiquity of point and line symmetries are vividly pointed out and awake our
sensitivity to geometrical symmetry. But the notion of symmetry enters many domains
of school mathematics other than geometry. One of these domains is problem solving,
where symmetry must be seen or imposed on a problem to effect its solution. Another
domain is in concept formation, where it is often advantageous to think of basic
mathematical notions in terms of symmetrical properties which surround them.

Figure 3 lists three problems whose solutions depend on symmetry. Do you see how to
solve them and to generalize the problem? It has been our experience that most students
cannot solve these problems, because they do not use symmetry as a heuristic tool.
(Partial answers are presented at the end of this paper.)

A
Solve:
M x'-x" X' - x+1=0
=N
B C H
a b c

Find a point P on AB Given a billiard table
and a point Q on BC 4 X3. A ball stands in
s.t.MP + PQ + QN the lower left-hand corner

is minimal. and travels at an angle of
45°. This ball will end up
in the upper left-hand poc-
ket. Generalize.

Figure 3
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But symmetry need not be limited to algebra and geometry. Let us consider the notion
of Magic Squares.

Magic Squares: The idea underlying magic squares is to put n* integers into the cells of
an nXn square so that the sums obtained by adding the numbers in each column, each
row and each diagonal are equal. When we restrict the numbers to the positive integers
1,2,3, ..., n* we call the magic square a normal magic square of order n.

There are many problems associated with magic squares, e.g.,

e  Show that it is impossible to have a magic square of order two.

e  Show that the center cell in a 3X3 normal magic square must be 5.

e Show that it is impossible to have the number 1 in a corner cell of a normal 3X3
magic square.

e  What must be the sum of each row in a 10X10 normal magic square?

Students seem to love problems with magic squares, but constructing the square itself,
even a normal magic square, is not easy. There are two main classes of normal magic
squares; those for which the order is odd and those in the order is even. And for those
which are of even order, there is a further classification; those for which the order is
divided by 4 and those for which it is not. For each of these there is a different
algorithm to construct them. Because of space limitations we will only look at magic
squares of odd order. (A comprehensive discussion of the underlying theory,
construction and generalizations of magic squares is given in Ball (1949).)

The following algorithm can be extended to all magic squares of odd order; we
exemplify it in Figure 4 for the 3X3 case. Start with 1 in the top middle cell. Now move
along the diagonal, always moving upward and to the right. If in so moving, we find
ourselves outside of the square’s frame at the top, we continue filling in the cells of the
square at the bottom of that column (Fig 4a). If we find ourselves outside the frame on
the right, we move to the first cell on the left of that row (Fig 4b). If a cell is blocked
within the frame itself because we have already filled it in, we drop to the cell
immediately under the one from which we came, fill it in (Fig 4c) and continue filling in
the square moving upward and to the right.
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Figure 4
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There are several ways to see that the square is really magic. One way is to actually
check the sums in each row, column and diagonal. Another one is a little easier; e.g., to
check to see if a 5X5 square is indeed magic, write each number in each cell in base 5.
Now from the number in each cell subtract one from its base 5 representation. What
remains is all combinations of two digit numbers in base five. It can be seen that each
row and column and one of the diagonals are some permutation of the same digits. In
other words, one need not do the actual computations, but simply check to make sure
that all digits are there.

Students love to play with magic squares, but they are often unable to construct ones
which are not normal. Here is where symmetry can enter because all magic squares of
order 3 are of a particular form as shown in Figure 5.

ap fad+pk|atk

h+k+if a |akp

ak Jatk-p| a+p

Figure 5: Final State

Students are often amazed at how simple this is for them and they often try to generalize
the method of building symmetry along the diagonals of higher ordered squares. This
exercise opens up many doors for discussion, building in symmetry to effect a solution
and degrees of freedom are just two avenues for deeper work.

Symmetry in cubic polynomials: There are two ways to prove that every cubic
polynomial is symmetric about its point of inflection. A cubic polynomial is one of the
form f{x) = ax® + bx* + cx + d and its general graph is listed in Figure 6.

Y

y=fx}

/ .
I\

Figure 6

Its point of inflection is at ( -6 f(‘_bn So, using its graph to guide us we wish to show
3a’"\ 3a

(&) 1(@)-1(z) ()

that:
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The algebra is not easy but straight forward.
Another way to do the problem is to play on its symmetry from the start.

First we look at the graphs of y = x* and y = (x - 1)(x)(x + 1). Each of these graphs has
its point of inflection on the y-axis, and the students easily prove that the graphs are
symmetric with respect to their point of inflection. We then talk about the effect of
adding a constant to the above equations, y = © + k y =(x- 1)(x)(x+ 1) + k. The
students immediately realize that the effect of adding a constant to equations of this type
simply pushes the graph up or down the y-axis; their points of inflection remain on the
y-axis and thus the symmetry remains intact. The students thus realize that an equation
of the form y = x* + Bx + C has a point of inflection on the y-axis and that its graph is
symmetric about it.

We then return to the general equation and ask if there is some way to transform it into
one that will result in a cubic of the form y = z> + pz + ¢. The transformation
x =z — (b/3a) will move the graph horizontally so that its point of inflection is on the
y-axis. In effect this gives another proof that cubic equations are symmetric about their
point of inflection.

SUMMARY

In this paper we have tried to show that symmetry is a concept which can be exploited
and used as a red thread connecting different branches and skills in school mathematics.
But the main message we have tried to argue is that symmetry must be taught. It is too
useful and important a topic to let it develop casually, if at all, as one passes through the
school curriculum.
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Notes on Figure 3

a) Let M* be the reflection of point M through AB. Similarly, let N* be the reflection of
point N through BC. Let segment M*N* intersect AB and BC in points P and Q
respectively. MP + PQ + QN is minimal. Do you see why?

A
M?*

L

b) This is a symmetric polynomial. As such, we should focus on its middle term, namely
x%. Since x # 0 we can divide the polynomial by X%

1 1
I4_Ig+$2—x+1:07—’:’2:2"“1‘*“1—;-*’—1—5:0

Letting ¢ = x + (1/x) and noting that £ -2 =x* + (1/x%) transforms the equation into a
quadratic which gives a surprising solution.

c) Systematically consider special cases. A conjecture for the general case will soon be
apparent. An elegant way to prove the conjecture is to use symmetry, by repeatedly
reflecting a table of given dimensions about its edges. The path of the ball then becomes
a straight line.
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