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1. INTRODUCTION

In the course of our very pleasant correspondence with Professor D6nes Nagy about our
contribution to the Proceedings of The Third International Conference on Symmetry,
held in Washington D. C. in August 1995, the idea took shape of our writing two
articles about the symmetry of geometrical figures, one of a practical nature, the other of
a more theoretical nature. Thus this article is a companion to the article Symmetry in
Practice (in this issue), which describes very practical ways of constructing regular
polygons and polyhedra. We subtitle that article Recreational Constructions - and refer
to it henceforth as [Rec] - because the constructions, involving the use of colored paper,
have an undoubted recreational flavor. However, it is our conviction, based on many
years’ experience, that the execution of such model constructions can play a vital role in
enlivening and enriching the study of geometry, especially if the mathematical theory
underlying the constructions features prominently. Thus it is our strong hope that
readers of [Rec] will be encouraged to move on to this more theoretical sequel, to learn
why the constructions work and better to understand the nature of symmetry. We also
set the mathematical development in its historical context and show explicitly how the
geometry is related to other parts of mathematics - real analysis, number theory, group
theory, combinatorics. Such connections should, in our view, form an integral part of
the teaching and learning of any part of mathematics. We will refer to the present
article, briefly, as [Math].
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In Section 2 we link the practical instructions of [Rec] to a mathematical discussion of
the parameters of the polygons constructed. Thus we answer two questions which stand
in a converse relation to each other, namely, (i) given the folding instructions for our
tape, when will we be able to produce a regular convex polygon and how many sides
will it have, and (ii) given a number p, what folding instructions will produce a regular
p-sided polygon (or p-gon)?

Having learnt in Section 2 how to construct certain regular figures, we turn in Section 3
to the question of just what we should understand by the symmetry of a geometrical
figure, and how it should be measured. From a mathematical point of view it makes
very little sense to say that a given figure A is symmetrical,l but we have a precise idea
of its group of symmetries, that is, of the subgroup of the group of Euclidean
movements of the ambient space of A under which A is invariant. Based on this idea, we
can give meaning to the statement that figure A is more symmetrical than figure A’.
However, we need to bear in mind that the symmetry group of A depends on our
convention as to what is the ambient space of A. Thus if A is a circle, then its symmetry
group as a subset of the plane depends on whether we allow reflexions of the plane or
not (note that a reflexion of the plane cannot be achieved by a movement in the plane,
but only by a movement in 3-dimensional space).

Another important aspect of symmetry arises when one considers actual physical
models of geometrical configurations. Suppose we have constructed a model M of the
figure A by braiding together colored strips; A may be a regular dodecahedron, say. Our
model cannot have more symmetry than A itself- but it may well have less. For to
every symmetry g of A we have a movement of the model M which may create an
image Mg recognizably different from M because of the arrangement of colors. Thus the
symmetry group of M may only be a subgroup of the symmetry group of A; and
aesthetics come into the story here by requiring the symmetry group of M to be as large
as possible. Thus can mathematics contribute to the study of aesthetics!

It turns out (not surprisingly!) that, ifB is a subset of A and if GA is the symmetry group
of A, then the set of images of B under the action of elements of GA is the set of
homologues of B in the sense of George P61ya; we explain this in Section 4. Actually,
P61ya never wrote down his work on homologues (which, so far as we know, he only
discussed in the case where A is a Platonic solid), but, when he was a very old man, he

We might perhaps say that A is symmetrical if there is a non-trivial Euclidean movement sending A to itself.
classification of symmetricality due to Kepler is to be found in [C2I.
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asked us to write it down for him, and we are proud and happy to have this opportunity
to do so (see Figure 9 of for the only extant copy of his original notes on the subject).

In Section 5 we explain P61ya’s famous Enumeration Theorem, one of the most
important theorems of that branch of mathematics known as combinatorics. We apply it
to the symmetries of geometrical figures, where parts of the figures are colored in
prescribed ways, and again recover the notion of homologue from the formulation of the
theorem.

The final section is an informal epilogue, describing our relationship with George P61ya.
We are grateful to D6nes Nagy for inviting us to write these two articles, [Rec] and
[Math], and for persuading us to include some personal reflections on our good fortune
in knowing that remarkable man so well.

2. 2-PERIOD FOLDING PROCEDURES FOR CONSTRUCTING
REGULAR POLYGONS AND A GENERALIZATION

We agreed in [Rec] that, however symmetry is defined, the most symmetric polygons
are the regular polygons, both the regular convex polygons and the regular star polygons
(see [C1] ). This is our justification for devoting this section to a particularly easy way
of constructing examples of such polygons; in fact, we will confine ourselves, in this
article, to the construction of regular convex polygons. The practical problems of such
constructions are discussed in our~companion article [Rec].

To set our problem in its historical context, we should really begin with the Greeks and
their fascination with the challenge of constructing regular convex polygons. We will
refer to such p-sided polygons as regular convex p-gons, and we may even suppress the
word convex if no confusion would result. The Greeks, working on these problems
about 350 B.C., restricted themselves to constructions using only what we call
Euclidean tools, namely an unmarked straightedge and a compass. No doubt the Greeks
would have liked to be able to describe Euclidean constructions whenever possible.
However, they were only able to provide such constructions for regular convex
polygons having p sides, where

p = 2Cp0, with p0 = 1, 3, 5, or 15.

About 2,000 years later Gauss (1777 - 1855) showed that Euclidean constructions were
possible only rarely. He proved that a Euclidean construction is possible if and only if
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the number of sidesp is of the formp = 2cI-[~oi, where the p, are distinct Fermat primes -
2n

that is, primes of the form Fn = 2 +1.

Gauss’s discovery was remarkable - it tells us precisely which regular p-gons admit a
Euclidean construction, provided, of course, that we know which Fermat numbers Fn
are prime. In fact, not all Fermat numbers are prime. Euler (1707 - 1783) showed that
F5 = 225+1 is not prime, and although many composite Fermat numbers have been
identified, to this day the only known prime Fermat numbers are

F0 = 3, F1 = 5, F2 = 17, F3 = 257 and F4 = 65537.

Thus, even with Gauss’s contribution, there exists a Euclidean construction of a regular
p-gon for very few values of p, and even for these p we do not in all cases know an
explicit construction. For example, in The World of Mathematics [N] we read:

Simple Euclidean constructions for the regular polygons of 17 and 257 sides
are available, and an industrious algebraist expended the better part of his
years and a mass of paper in attempting to construct the F4 regular polygon of
65,537 sides. The unfinished outcome of all this grueling labor was piously
deposited in the library of a German university.

Despite our knowledge of Gauss’s work we still would like to be able to construct
(somehow) all regular p-gons. Our approach is to redefine the question so that, instead
of exact constructions, we will ask for which p > 3 is it.possible, systematically and
explicitly, to construct an arbitrarily good approximation to a regular p-gon? We take it
as obvious that we can construct a regular p-gon exactly if p is a power of 2. What we
will show is that it is possible, simply and algorithmically, to construct an
approximation (to any degree of accuracy) to a convex p-gon for any value of p > 3. In
fact, we will give explicit (and uncomplicated) instructions involving only the folding of
a straight strip of paper tape in a prescribed periodic manner.

Although the construction of regular conv.ex p-gons would be a perfectly legitimate goal
by itself, the mathematics we encounter is generous and we achieve much more. In the
process of making what we call the primary crease lines used to construct regular
convex p-gons we obtain tape which can be used to fold certain (but not all) regular star
polygons. It is not difficult to add secondary crease lines in order to obtain tape that
may be used to construct the remaining regular star polygons.

As it turns out, the mathematics we encounter, in validating our folding procedures,
leads quickly and naturally to questions, and hence to new results, in number theory.
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Those interested may consult [HP3]. In the interests of mathematical simplicity, as we
have said, we will confine attention, in this article, to convex polygons. The more
ambitious reader, interested in star polygons, may consult [C1, HP2, 3].

Let us begin by explaining a precise and fundamental folding procedure, involving a
straight strip of paper with parallel edges (adding-machine tape or ordinary
unreinforced packaging gummed tape work well), designed to produce a regular convex
p-gon. For the moment assume that we have a straight strip of paper that has creases or
folds along straight lines emanating from vertices, which are equally spaced, at the top
edge of the tape. Further assume that the creases at those vertices, labeled Ank, on the top
edge, form identical angles of ~p with the top edge, as shown in Figure l(a). If we fold
this strip on AnkAra+2, as shown in Figure l(b), and then twist the tape so that it folds on
A~A~k+I, as shown in Figure l(c), the direction of the top edge of the tape will be rotated
through an angle of 2~t/p. We call this process of folding and twisting the FAT-
algorithm.

(b)

Figure 1

Now observe that if the FAT-algorithm is performed on a sequence of angles, each of
which measures zdp, at the first p of a number of equally spaced locations along the top
of the tape, in our case at A,k for n = 0, 1, 2 ..... p-I, then the top edge of the tape will
have turned through an angle of 2~, so that the point Apk will then be coincident with Ao.
Thus the top edge of the tape visits every vertex of a regular convex p-gon, and thus
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itself describes a regular p-gon. A picture of the tape with its crease lines, and the
resulting start of the construction of the regular p-gon, is given in Figure 2. Notice that
we have not adhered there to our systematic enumeration of the vertices on the two
edges of the tape that play a role in the construction. (The enumeration has served its
purpose!)

Notice, too, that if we had the strip of paper shown in Figure 2(a), with its crease lines,
we could then introduce secondary crease lines bisecting each of the angles nearest the
top edge of the tape and this tape could then be used to construct a regular 2p-gon with
the FAT-algorithm. We could then, in principle, repeat this secondary procedure, as
often as we wished, to construct regular 4p-gons, 8p-gons .... It is for this reason that we
only need to concern ourselves with devising primary folding procedures for regular
polygons having an odd number of sides in order to be able to assure ourselves we can,
indeed, fold all regular polygons.

Figure 2

Now, since the regular convex 7-gon is the first polygon we encounter for which we do
not have available a Euclidean construction, we are faced with a real difficulty in
making available a crease line making an angle of rd7 with the top edge of the tape. We
proceed by adopting a general policy, that we will eventually say more about - we call it
our optimistic strategy. Assume that we can crease an angle of 2~7 (certainly we can
come close) as shown in Figure 3(a). Given that we have the angle of 2~/7, then simply
folding the top edge of the strip DOWN to bisect this angle will produce two adjacent
angles of ~7 at the top edge as shown in Figure 3(b). (We say that rd7 is the putative
angle on this tape.) Then, since we are content with this arrangement, we go to the
bottom of the tape, and now we really start the folding procedure.
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We observe that the angle to the right of the last crease line is 6~7 - and our policy, as
paper folders, is that we always avoid leaving even multiples of ~r in the numerator of
any angle next to the edge of the tape, so we bisect this angle of 6~7, by bringing the
bottom edge of the tape UP to coincide with the last crease line as shown in Figure 3(c).
We settle for this (because we are content with an odd multiple of z¢ in the numerator)
and go to the top of the tape where we observe that the angle to the right of the last
crease line is 4~7 - and, in accordance with our stated policy, we bisect this angle
twice, each time bringing the top edge of the tape DOWN to coincide with the lase
crease line, obtaining the arrangement of crease lines shown in Figure 3(d). But now we
notice something miraculous has occurred! If we had really started with an angle of
exactly 2rd7, and if we now continue introducing crease lines by repeatedly folding the
tape UP once at the bottom and DOWN twice at the top, we get precisely what we want;
namely, pairs of adjacent angles, measuring n/7, at equally spaced intervals along the
top edge of the tape. Let us call this folding procedure the UID2- or D2Ui-folding
procedure and call the strip of creased paper it produces~ UID~-- or D~Ul-tape.

(a)

Figure 3

2 It is our habit to refer to D2ULtape, but this choice is quite arbitrary.
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We suggest that before reading further you get a piece of paper and fold an acute angle
that you regard as a good approximation to 2~7. Then fold about 40 triangles using the
D2Ul-folding procedure just described, throw away the first 10 triangles, and try to
construct the FAT 7-gon shown in Figure 4(b). You will have no doubt that what you
have created is, in fact, a 7-gon, but you may wonder why it should have worked so
well. In other words, how can we prove that this evident convergence must take place?
One approach is to admit that the first angle folded down from the top of the tape in
Figure 3(a) might not have been precisely 2rd7. Then the bisection forming the next
crease would make two acute angles nearest the top edge in Figure 3(b) only
approximately rd7; let us call them rd7 + ~ (where e may be either positive or negative).
Consequently the angle to the right of this crease, at the bottom of the tape, would
measure 6zr/7 - & When this angle is bisected, by folding up, the resulting acute angles
nearest the bottom of the tape, labeled 3rd7 in Figure 3(c), would, in fact, measure
3rd7-~2, forcing the angle to the right of this crease line at the top of the tape to have
measure 4n/7 + ~/2. When this last angle is bisected twice by folding the tape down, the
two acute angles nearest the top edge of the tape will measure rd7 + 7¢/23. This makes it
clear that every time we repeat a D2Ul-folding on the tape the error is reduced by a
factor of 23.

Figure 4

Now it should be clear how our optimistic strategy has paid off. By blandly assuming
we have an angle of ~7 to begin with, and folding accordingly, we get what we want -
successive angles at the top of the tape which, as we fold, rapidly get closer and closer
to rd7! A truly remarkable vindication of our optimistic strategy!

In practice the approximations we obtain by folding paper are quite as accurate as the
real world constructions with a straight edge and compass - for the latter are only
perfect in the mind. In both cases the real world result is a function of human skill, but
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our procedure, unlike the Euclidean procedure, is very forgiving in that it tends to
reduce the effects of human error - and, for many people, it is far easier to bisect an
angle by folding paper than it is with a straight edge and compass.

Observe that it is in the nature of the folding procedure that we will always be folding
DOWN a certain number of times at the top and then folding UP a certain (not
necessarily the same) number of times at the bottom and then folding DOWN (possibly
an entirely new) number of times at the top, etc. Indeed, a typical folding procedure may
be represented by a sequence of exponents attached to the letters DU DU DU DU... the
sequence stopping to avoid simply repeating a given finite string of exponents. The
length of the repeat for the exponents is called the period of the folding procedure.
(Thus the folding that produced the 7-gon is called a 2-period folding procedure.) It is
an important fact that, for every odd p, a regular p-gon may be folded by instructions so
encoded. It is thus very natural to ask what regular p-gons can be produced by the 2-
period folding procedure?

In the process of answering this question we make straightforward use of the
following:3

Lemma 2.1 For any three real numbers a, b and x0, with a ~: 0, let the sequence {xk}, k =
0,1,2 .... be defined by the recurrence relation

xk +, ax~+l = b, k = 0, 1, 2 .... (2.1)

Then iflal > 1, x~ --~ b/(l+a) as k --> oo.

Proof’. Set x~ = b/(l+a) + y~. Then yk + ay~÷ ~ = 0. It follows that y~ = ((-1)/a)~yo.
If lal > 1, ((-1)/a)~ --> 0, so that yk --> 0 as k --> oo. Hence x~ --~ b/(l+a) as
k --> 0o. Notice that y~ is the error at the kth stage, and that the absolute value of
y~ is equal to lyol/lal~.

This result is the special linear case of the Contraction Mapping Principle (see [W]). We
point out that it is significant that neither the convergence nor the limit depends on the
initial value Xo. This implies, in terms of the folding, that the process will converge, and
to the same limit, no matter how we fold the tape to produce the first line - this is what
justifies our optimistic strategy! And, as we have seen in our example, and as we will
soon demonstrate in general, the result of the lemma tells us that the convergence of our
folding procedure is rapid, since in all cases lal will be a positive power of 2.

This lemma is actually applicable to folding procedures of arbitrav.  period.
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Fold down n times

:,"-,,’,~ ....... ",5:’,,,

u,t,. "..,,.~.::,; ........ u~+!

Fold up n times

kth stage (1-period tblding)
(a)

Fold down m times

Uk
FoLd up n times

kth stage (~period Iblding)

(b)
Figure 5

Now we will look at the general 2-period folding procedure, Dmun. In this case a typical
portion of the tape would appear as shown in Figure 5(b). If the folding process had
been started with an arbitrary angle u0 at the top of the tape we would have, at the kth
stage,

Uk + 2nVk =
I)k q- 2mUk+l = ~,

and hence it follows that
Uk - 2"+"uk+l = n(1-2"), k = 0,1,2 ....

Thus, using Lemma 2.1, we see that
2n --1uk’-* ~r as k--~oo

2m+" _ I
2n --1so that ~r is the putative angle ardb. Thus the FAT-algorithm will produce,

2 m+, - 1                                                           "
from this tape, a star { b/a }-gon, where the fraction bla may turn out not to be reduced
(for example when m = 4, n = 2), with a = 2"-1, b = 2m÷"-l. By symmetry we infer that
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2m --IVk -’-’~ -- ~ as
2~+~ -1

Furthermore, if we assume an initial error Eo then we know that the error at the k:h stage
(when folding Dmun has been done exactly k times) will be given by Ek = Eo12<m+n)k.
Hence, we see that in the case of our D2ULfolding (Figure 3) any initial error E0 is, as
we already saw from our initial argument, reduced by a factor of 23 between
consecutive states. It should now be clear why we advised throwing away the first part
of the tape - but, likewise, it should also be clear that it is never necessary to throw
away very much of the tape. In practice, convergence is very rapid indeed, and if one
made it a rule of thumb always to throw away the first 20 crease lines on the tape for
any iterative folding procedure, one would be absolutely safe.

We have seen that the DmU~-folding procedure, or, as we may more succinctly describe
it, the (m, n)-folding procedure, produces angles ~s on the tape, where

s - (2.2)

Notice that when n = tn the folding becomes, technically, a 1-period folding procedure
2m+n _ 1which produces a regular s-gon, where s -         - 2n+l. Thus we see, immediately,
2" -1

that the DnU~-folding will produce tape to which the FAT-algorithm can be applied to
obtain regular (2n+l)-gons. These constructions provide approximations to many (but
not all) of the polygons the Greeks and Gauss were able to construct with Euclidean
tools. We can certainly construct a regular polygon whose number of sides is a Fermat
number, but (see [Rec]) it is never possible to construct, with a 1-period folding those
regular polygons where the number of sides is the product of at least two distinct Fermat
numbers (thus, 15 serves as the first example where we find trouble).

The polygons which are of most interest to us in the construction of regular polyhedra
are those with 3 or 5 sides (since we have exact constructions for the square). Our
companion article [Rec] of this issue contains very explicit instructions of the folding
procedures that produce the D1U1- and the D2U2-tape (which can be used to construct 3-
and 5- gons, respectively) along with equally explicit instructions for building some
braided polyhedra from the tape produced. The reader is encouraged to at least peruse
that part of this issue before going on, since we will be making references to some of the
models whose construction is described there in the next section.
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Before we begin the discussion of symmetry let us finish explaining how you might
construct those regular polygons that cannot be folded by the 1- or 2-period folding
procedures. For example, suppose we wanted to construct a regular 11-gon. Our
arguments in [HP1, 2 or 3] show that no 2-period (or 1-period) folding procedure can
possibly produce an 11-gon.

In fact, the example of constructing the regular 11-gon is sufficiently general to show
the construction of any regular p-gon, with p odd. So let us demonstrate how to
construct a regular 11-gon. we proceed as we did in the construction of the regular 7-
gon (in Section 2) - we adopt our optimistic strategy (which means that we assume
we’ve got what we want and, as we will show, we then actually get what we want!).
Thus we assume we can fold an angle of 2~11. We bisect it by introducing a crease
line, and follow the crease line to the bottom of the tape. The folding procedure now
commences at the bottom of the tape. Thus

(1) Each new crease line goes in the forward (left to right) direction along the tape;

(2) Each new crease line always bisects the angle between the last crease line and the
edge of the tape from which it emanates;

(3) The isection of angles at any vertex continues until a crease line produces an angle
of the form arc/11 where a is an odd number; then the folding stops at that vertex
and commences at the intersection point of the last crease line with the other edge
of the tape.

Once again the optimistic strategy works and our procedure results in tape whose angles
converge to those shown in Figure 6(b). We could then denote this folding procedure by
UID! U3D1 UID3... interpreted in the obvious way on the tape - that is, the first exponent
"1" refers to the one bisection (producing a line in the upward direction) at the vertices
A6n (for n = 0, 1, 2,...) on the bottom of the tape; similarly the next "1" refers to the
bisection (producing a crease in the downward direction) made at the bottom of the tape
through the vertices A6n+l; etc. However, since the folding procedure is duplicated
halfway through, we can abbreviate the notation and write simply { 1,1,3}, with the
understanding that we alternately fold from the bottom and top of the tape as described,
with the number of bisections at each vertex running, in order, through the values 1, 1,
3 .... We call this a primary folding procedure of period 3 or a 3-period folding, for
obvious reasons. The crease lines made during this procedure are called primary crease
lines.
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Figure 6 (Note that the indexing of the vertices is not the same as that in Fig. 1).

Our argument, as described for p = 11, may clearly be applied to any odd number p.
However, our tape for the 11-gon has a special symmetry as a consequence of its odd
period; namely that if it is "flipped" about the horizontal line halfway between its
parallel edges, the result is a translate of the original tape. As a practical matter this
special symmetry of the tape means that we can use either the top edge or the bottom
edge of the tape to construct our polygons. On tapes with an ’even period the top edge
and the bottom edge of the tape are not translates of each other (under the horizontal
flip), which simply means that care must be taken in choosing the edge of the tape used
to construct a specific polygon.

A proof for the convergence for the general folding procedure may be given that is
similar to the one we gave for the primary folding procedure of period 2, using Lemma
2.1. Alternatively one could revert to an error-type proof like that given for the 7-gon.
We leave the details to the reader.

For further reading, and a discussion of the construction of star polygons see [HP2, 3
and 5].

3. THE SYMMETRY GROUP OF A GEOMETRIC CONFIGURATION

We want now to take up the more mathematical aspects of symmetry. Indeed, at this
stage, we lack a precise definition of symmetry - we cannot even give a meaning, in
general, to the statement that one geometrical figure is more symmetric than another. Of
course, a square is more symmetric than an arbitrary rectangle, and a rectangle is more
symmetric than an arbitrary quadrilateral. But can we, for example, always compare the
symmetries of regular polygons?
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We are guided in our definitions by the approach of the great German mathematician
Felix Klein (1849 - 1925) to understanding the nature of geometry. Consider, for
example, the usual plane Euclidean geometry, in which we study the properties of
planar figures which are invariant under certain Euclidean motions. These motions
certainly include translation and rotation, but it is a matter of choice whether they
include reflexion. For example the FAT 7-gon (Figure 4(b)) is invariant under rotations
through 2~/7 about its center, but not under reflexion in its plane. Thus, to define our
geometry, we must decide whether we allow Euclidean motions which reverse
orientation. Of course, it we allow certain Euclidean motions, we must also allow
compositions and inverses of such motions, so we postulate a certain group G of
allowed motions. If A is a planar figure, then, for any g ~ G, Ag is again a planar figure
and, in the G-geometry of A, we study the properties of the figure A which it shares with
all the figures Ag as g varies over G; such properties are called the G-invariants of A,
abbreviated to invariants if the group G may be understood.

Example 3.1 Let G be the group of motions of the plane generated by translations,
rotations and reflexions (in a line); we call this the Euclidean group in 2 dimensions and
may write it E2. Then the Euclidean geometry of the plane is the study of the properties
of subsets of the plane which are invariant under motions of E2. For example, the
property of being a polygon is a Euclidean property; the number of vertices and sides of
a polygon is a Euclidean invariant. On the other hand, as we have hinted, orientation is
not invariant with respect to this group, though it would be if we disallowed reflexions.
Thus, by means of a motion in E2 the triangle ABC may be turned over (flipped) to form
the triangle A’B’C’ as shown in Figure 7. But the orientation of the triangle AB~ is anti
clockwise, while the orientation of the triangle A’ B’ ~ is clockwise.

Fig~e 7: ~e ~gle ABC me , be ~sfo~ed by a ~maon in 3 dimensions into ~e ~gle A’B’C’
reve~ing the orientation of ~e ~gle.

Example 3.2 We may ’step up a dimension’, passing to the group E3 of Euclidean
motions in 3-dimensional space. Notice that it is natural to think of reflexions in a line
(of a planar figure) as a ’motion’ since it can be achieved by a rotation in some suitable
ambient 3-dimensional space containing the plane figure. However, it requires a greater
intellectual effort to think of reflexion in a plane (of a spatial figure) as a motion in
some ambient 4-dimensional space! Who would think of turning the golden
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dodecahedron (see Figure 8 of [Rec]) inside out? Thus it is common not to include such
reflexions in defining 3-dimensional geometry. This preference is, however, a
consequence of our experience of living in a 3-dimensional world and has no
mathematical basis. However, since, in this article, and its companion article, we are
highlighting the construction of actual physical models of geometrical configurations, it
is entirely reasonable to omit ’motions’ to which the models themselves cannot be
subjected.

We now introduce the key idea in the precise definition of symmetry. Let a geometry be
defined on the ambient space of a geometric configuration A by means of the group of
motions G. Then the symmetry group of A, relative to the geometry defined by G, is the
subgroup GA of G consisting of those motions g ~ G such that Ag = A, that is, those
motions which map A onto itself, or, as we say, under which A is invariant. Thus, for
example, if our geometry is defined by rotations and translations in the plane, and ifA is
an equilateral triangle, then its symmetry group GA consists of rotations about its center
through 0°, 120°, and 240°; if, in our geometry, we also allow reflexions, then the
symmetry group has 6 elements instead of 3, and is, in fact, the very well-known group
$3, called the symmetric group on 3 symbols - the symbols may be thought of as the
vertices of the triangle. We must repeat for emphasis that the symmetry group GA of the
configuration A is a relative notion, depending on the choice of ’geometry’ G.

It is plain that no compact (bounded) configuration can possibly be invariant under a
translation. Thus when we are considering the symmetry group of such a figure we may
suppose G to be generated by rotations and, perhaps, reflexions. Moreover, any such
motion in the plane is determined by its effect on 3 independent points and any such
motion in 3-dimensional space is determined by its effect on 4 independent points.
Since a (plane) polygon has at least 3 vertices and a polyhedron has at least 4 vertices,
and since any element of the symmetry group of a polygon or a polyhedron must map
vertices to vertices, it follows that the symmetry group of a polygon or a polyhedron is
finite (compare the symmetry groups of a circle or a sphere).

The symmetry group of any polygon with n sides is, by the argument above, a subgroup
of Sn, the group of permutations of n symbols, also called the symmetric group on n
symbols. If G is generated by rotations alone, and the polygon is regular, this group is
the cyclic group of order n, often written Cn, generated by a rotation through an angle of
2rdn radians about the center of the polygonal region. If G also includes reflexions, this
group has 2n elements and includes n reflexions; this group is called a dihedral group
and is often written D~.
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In discussing the symmetry groups of polyhedra, we will, as indicated above, always
assume that the geometry is given by the group G generated by rotations in 3-
dimensional space. Then the symmetry group of the regular tetrahedron is the so-called
alternating group An. In general, An is the subgroup of Sn consisting of the even
permutations of n symbols; it is of index 2 in Sn, that is, its order is half that of S~, or
n!/2. Thus the order of A4 is 12. The cube and the regular octahedron have the same
symmetry group, namely $4. It is easy to see why the symmetry groups are the same; for
the centers of the faces of a cube are the vertices of a regular octahedron, and the centers
of the faces of a regular octahedron are the vertices of a cube. Likewise, and for the
same reason, the regular dodecahedron and the regular isocahedron have the same
symmetry group, which is As. It is a matter of great interest and relevance here that the
symmetries of the Diagonal Cube and the special braided octahedron of Figure 7 and
Figure 16, respectively (of [Rec]) each permute the four braided strips from which the
models are made. This provides a beautiful explanation of why their symmetry group is
the symmetry group $4.

We are now in a position to give at least one precise meaning to the statement "Figure A
is more symmetric than Figure B". If it happens that the symmetry group GA of A strictly
contains the symmetry group GB of B, then we are surely entitled to say that A is more
symmetric than B. Notice that the situation described may, in fact, occur because B is
obtained from A by adding features which destroy some of the symmetry of A. For
example, the coloring of the strips used to construct the braided Platonic solids of
Figure 6 of [Rec] will reduce the symmetry in all cases but that of the cube.

However, the definition above is really too restrictive. For we would like to be able to
say that the regular n-gon becomes more symmetric as n increases. We are thus led to a
weaker notion which will be useful provided we are dealing with figures with finite
symmetry groups (e.g., polygons and polyhedra). We could then say - and do say - that
A is more symmetric than B if GA has more elements than G~. Thus we have, in fact,
two notions whereby we may compare symmetry - and they have the merit of being
consistent. Indeed, ifA is more symmetric than B in the first sense, it is more symmetric
than B in the second sense - but not conversely.

Notice that we deliberately avoid the statement - often to be found in popular writing -
"A is a symmetric figure". We regard this statement as having no precise meaning!
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4. HOMOLOGUES

George P61ya, who made great contributions not only to mathematics itself, but also to
the understanding of how and why we do mathematics - or perhaps one should say ’how
and why we should do mathematics’ - was particularly fascinated by the Platonic solids
and first introduced his notion of homologues in connection with the study of their
symmetry; they later played an important role in one of his most important contributions
to the branch of mathematics know as combinatorics, namely, the P6lya Enumeration
Theorem (see [P1] for an intuitive account). Let us describe this notion of homologues
in terms of symmetry groups. We believe that we are thereby increasing the scope of the
notion and entirely maintaining the spirit.

Let A be a geometrical configuration with symmetry group GA, and let B be a subset of
A. Thus, for example, A may be a polyhedron and B a face of that polyhedron. We
consider the subgroup Gan of GA consisting of those motions in the symmetry group GA
of A which map B to itself. Now subgroups partition a group into cosets: If K is a
subgroup of H, we define a (right) coset of K in H as a collection of elements kh, with h
fixed and k varying over K. We call h a representative of this coset, which we write Kh.
Any two cosets Kh, Kh’ are either disjoint or identical (this is easy to prove), so we may
imagine that we have picked a set of coset representatives, one for each coset. In the
case in which we are interested the group H is finite so we may write, for some m

m

H= UKh,, (4.1)

where it is understood that the union is disjoint. Notice that m, which appears in (4.1)
and which we call the index of K in H, is just the ratio of the order of H to the order of
K. An example was provided earlier with H = Sn, the symmetric group, and K = An, the
alternating group. Then m = 2.

Reverting to our geometrical situation, we consider a coset of Gtn in GA, that is, a set
Gang, g ~ GA. Every element in Gang sends B to the same subset Bg of A. The collection
of these subsets is what P61ya called the collection of homologues of B in A. We see that
the set of homologues of B is in one-one correspondence with the set of cosets of Gan in
GA.

Example 4.1 Consider the pentagonal dipyramid A of Figure 5(b) of [Rec]. We may
specify any motion in the symmetry group of A by the resulting permutation of its
vertices 1, 2, 3, 4, 5, 6, 7. In fact, Ga is the dihedral group Ds, with 10 elements, given
by the following permutations sending (1 2 3 4 5 6 7), resepectively, to
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~ (1234567) (Identity)
~ (2345671) (rotation through 2~5 about axis 67)
--~ (3451267)
--~(4512367)
--~(5123467)
--~ (5432176) (interchanging top and bottom)
--, (432 1567) (interchange plus rotation through 2rd5)
--~(32 15467)
--~(2154376)
--~ (1543276)

First, let be the edge 16. Then GA~ = {ld}, since only the identity sends the subset (1, 6)
to itself. Thus the index of GAB in GA is 10, and there are 10 homologues of the edge 16;
these are the 10 ’spines’ of the dipyramid (i.e., we exclude the edges around the equator).
Second, let B be the edge 12. Then GAB has 2 elements, since there are two elements of
GA, namely the identity and permutation (12 34 5 67) --~ (2 1 5 4 3 7 6), which send
the subset (1, 2) to itself. Thus the index of GA~ in GA is 5, and there are 5 homologues
of the 12; these are the 5 edges around the equator,

Third, let B be the face (126). Then GAB = {Id}, so that, as in the first case, there are 10
homologues of the face (126); in other words all the (triangular) faces are homologues.

Let us now explain the P61ya Enumeration Theorem - actually, there are two theorems -
and see how the notion of homologue fits into the story.

5. THE POLYA ENUMERATION THEOREM
Let X be a finit~ set; the reader might like to keep in mind the set of vertices (or edges,
or faces) of a polygon or polyhedron; and let G be a finite symmetry group acting on X.
Suppose X has n elements, and that G has rn elements; we write IXI = n, IGI -- tn. We
may represent the elements of the set X by the integers 1, 2 ..... n. If g E G, then g acts
as a permutation of { 1, 2 ..... n}. Now every permutation is uniquely expressible as a
composition of cyclic permutations on mutually exclusive subsets of the elements of X.
For example, the permutation

I123456789101q2471311568109.J (5.1)
is the composite (1 2 4)(3 7 5)(9 8 6 11)(10), where, e.g., (1 2 4) denotes the cyclic
permutation

I 1241241
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Thus the permutation (5.1) is the composite of one cyclic permutation of length 1, two
cyclic permutations of length 3, and one cyclic permutation of length 4, the cyclic
permutations acting on disjoint subsets of the set X. In general a permutation of X has
the type (al, a2 ..... an} if it consists of al permutations of length 1, a~_ permutations of
length 2 ..... an permutations of length n, the permutations having disjoint domains of

action; notice that Ea, = n. For example the permutation (5.1) has the type

{1,0,2,1,0,0, 0, 0, 0, 0, 0}. Ifg has the type {al, a2 .....an}, we define the cycle index of
g to be the monomial

Z(g) = Z(g; xl,x2 ..... xn) : XlalX2a2 ... Xnan¯

The cycle index of G is Z(g) = 1 ~_~Z(g)
m g~G

We give an example which we will revisit periodically throughout this section.

Example 5. I We consider the symmetries of the square as shown in Figure 8.

4 3
Figure 8: We denote this labeling of the square by 1234

The group G of symmetries is a group of order 8, which we describe by permutations of
the set of vertices { 1, 2, 3, 4 }. Thus

gl (Identity) (1 2 3 4) ---* (1 2 3 4) cycle index Xl4

g2 (1 2 3 4) --~ (2 3 4 1) cycle index x4
2g3 (1 2 3 4) --~ (3 4 1 2) cycle index x2

g4 (1 2 3 4) --~ (4 I 2 3) cycle index x4
g5 (1 2 3 4) --~ (3 2 1 4) cycle index xlZx2
g6 (1 2 3 4) --~ (1 4 3 2) cycle index x~2x2
gv (1 2 3 4) --~ (2 1 4 3) cycle index X22

2g8 (1 2 3 4) --~ (4 3 2 1) cycle index x~

Thus the cycle index of G is (xl4 + 2xl 2x2 + 3X22 + 2X4)]8.
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Now suppose we want to color the elements of X; that is, we have a finite set Y of
colors, IYI = r, and a coloring of X is a function4f: X ~ Y. For any g ~ G, we regard the
colorings f and fg as indistinguishable or equivalent; and a pattern is an equivalence
class of colorings. Then P61ya’s first theorem is as follows.

Theorem 5.1 The number of patterns is Z (G; r, r ..... r).

Example 5.1 (continued) Suppose the vertices are to be colored red or blue. Then r = 2,
and the number of patterns is (16 + 16 + 12 + 4)/8 = 6. In fact, the patterns are
represented by the 6 colorings: RRRR, BRRR, BBRR, BRBR, RBBB, BBBB.

We now describe P61ya’s second theorem. This is really the ’big’ theorem and the first
theorem is, in fact, deducible from it. Let us enumerate the elements of Y (the ’colors’) as
Yl, Y2 ..... Yr.

Z(G; xl, x2 ..... xn) at x, = Zy’j . Then the coefficient ofTheorem 5.2 Evaluate
j=l

ylniy2n2 ... yrnr is the number of patterns assigning the color yj to nj elements5 of X.

Example 5.1 (continued) For the symmetries of the square we know that

Z(G) = (x14+2xl 2x2 +3x22+2x4)18.

Thus if Y= {R, B}, then the evaluation of Z(G) at xi = R’+B’ yields
4 2 2 2 2 22 4 4((R+B) +2(R+B) (R + B )+3(R +B ) +2(R +B ))/8 = R4 + R3B + 2R2B2 + RB3 + B4

(It is, of course, no coincidence that this polynomial is homogeneous (of degree IXI and
symmetric. Thus the P61ya Enumeration Theorem tells us that there is one pattern with
4 red vertices (obvious); one pattern with 3 red vertices and 1 blue vertex, represented
by the coloring RRRB; 2 patterns with 2 red vertices and 2 blue vertices, represented by
the colorings BRRB and RBRB, and the remaining possibilities are analyzed by
considerations of symmetry.)

4 We speak of a colortng of X; this may be literally tree or it may merely be a metaphor for a rule for dividing
the elements of X into disjoint classes

5 course Z nj = n.Of
j=l
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Now, given a pattern, there are the various functions fg : X -~ Y, where f is a fixed
coloring and g ~ G, in that equivalence class of colorings. These are the homologues,
or, more precisely, the homologues off. Let us revert to our example.

Example 5.1 (continued) As we have seen, there is one coloring in which all vertices are
colored red. There is only one homologue, namely RRRR.

There is one coloring in which 3 vertices are colored red and one blue. There are 4
homologues, namely BRRR, RBRR, RRBR, RRRB.

There are two colorings in which 2 vertices are colored red and 2 blue. In the first there
are 4 homologues, namely BBRR, RBBR, RRBB, BRRB.

In the second there are 2 homologues, namely BRBR, RBRB.

The analysis is completed by considerations of symmetry.

Let us show how this conception of homologues agrees with our earlier definition. We
are given the group G of permutations of X. Given a coloring~ X --> Y, we consider the
subset Go of G consisting of those g such that fg = f, that is, those movements of X
which preserve the coloring. It is easy to see (just as easy as in our earlier, simpler
situation) that Go is a subgroup of G. Corresponding to each coset Gog of Go in G we
have a coloringfg of X and these colorings run through the pattern determined byf. We
have described the set of colorings {fg} as the set of homologues of the coloring f; as
indicated earlier, they are in one-one correspondence with the cosets of Go in G.

6. EPILOGUE: POLYA AND OURSELVES - MATHEMATICS,
TEA AND CAKES6

Professor George P61ya (1887 - 1985) emigrated to the United States in 1940 and
joined the Mathematics Department at Stanford University in 1942. Although the rest of
his professional life was spent at Stanford, he made many trips abroad to accept visiting
appointments for short periods of time. During P61ya’s visit to the ETH (ZiJrich) in 1966
he shared an office with Peter Hilton (and PH was a guest at his 80th birthday party, held
in Ztirich, in 1967).

6 We present this more personal epilogue to our article at the express request of D6nes Nagy.
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In 1969 P61ya was invited by Gerald Alexanderson (Mathematics Department Chairman
at Santa Clara University - then and now) to give a colloquium talk at SCU. While
there P61ya met Jean Pedersen and was fascinated by (a) the models in her office (some
of which are described in [Rec]) and (b) by her lack of knowledge about their symmetry
and their usefulness in exemplifying some of the mathematics of polyhedral geometry.
After this initial meeting Pedersen visited George and Stella P61ya at their Palo Alto
home once a week until his death in 19857. Pedersen and her husband Kent (who shares
P61ya’s birthday - except for the year!) were guests at P61ya’s 90th birthday party, held
at Stanford, in 1977 and the P61yas were guests at the Pedersen’s home for
Thanksgiving dinner for many successive years.

A typical visit, for Pedersen, included a discussion with P61ya about mathematics. After
an hour or so Stella would appear with tea and cakes, or cookies, and the three of them
would turn their attention to current events and politics. It was during this time that
Pedersen learned about proper rotation groups (knowledge that P61ya acquired from
Felix Klein himself) and the P61ya Enumeration Theorem, about Euler’s famous formula
connecting vertices, edges and faces of a polyhedron, and about the formula Descartes
discovered concerning the total angular deficiency of a polyhedron. Pedersen found
herself studying very hard8 and looking forward to discussing the new-found aspects of
her own models. P61ya and Pedersen also discussed pedagogy and, in fact, Pedersen was
P61ya’s last co-author (see [PP]).

In 1978 Pedersen was asked to try to get George P61ya and Peter Hilton together9 in
Seattle at the joint annual meeting of the American Mathematical Society and the
Mathematical Association of America, to discuss "How to and How Not to Teach
Mathematics". The suggestion was that Hilton should discuss "How Not to Teach
Mathematics" and this would be followed by P61ya giving "some Rules of Thumb for
Good Teaching". P61ya agreed to participate on the condition that Pedersen would
handle the travel details of getting him to and from Seattle. Hilton also gave only
conditional approval for the plan. Hilton’s idea was that it would be much more
interesting, and effective, if he were to demonstrate a thoroughly bad mathematics
lecture (instead of simply talking about it). Hilton also suggested that Pedersen should
be the moderator for the program.

7 After George P61ya’s death, Pedersen continued to visit Stella P61ya at least once a week until her death in
1989, just before her 94 birthday.
s Figure 9 is an example, in P61ya’s own handwriting of a page he once gave Pedersen saying "see if you can
figure out what it means". It is connected with what we’ve been writing about in this article, so we leave the
reader to do P61ya’s homework assignment for the week! The only hint P61ya gave was to say that H =
Hexahedron (cube).
9 This was how Hilton and Pedersen met and began a collaboration that has resulted in over 70 papers and
four books - to date!



6 oanS!zI



262 P. HILTON AND J. PEDERSEN

All conditions were met and the Seattle presentation duly took place. It was a
tremendous success. Hilton’s part was hilarious and some said it nearly ruined the rest of
the meeting as participants saw many of Hilton’s intentional errors unintentionally
repeated by some of the other speakers. P61ya’s contribution was, as you might expect,
superb and had the unmistakable mark of a master teacher. A month or so later Pedersen
was asked by the National Council of Teachers of Mathematics to arrange that the
Hilton-P61ya performance be repeated at their San Diego meeting in the fall of 1978 so
that it could be videotaped. After a few more meetings with tea and cakes, and some
long distance calls, this was done.

At the San Diego meeting Pedersen invited Hilton to visit SCU in October to give a
colloquium talk. He did, and when he saw the models in Pedersen’s office they again
sparked long discussions, but this time the discussions centered on the differences
between the ways geometers and topologists classify surfaces.

In 1982, while Peter Hilton was on sabbatical leave as a visiting professor at the ETH
and Pedersen was visiting there for a quarter, they began looking seriously at the paper-
folding. Hilton suggested to Pedersen that she should try to devise a really systematic
way of constructing the polygons from the folded strips (since the 2n+l-gons seemed to
have very special features that didn’t generalize). The first result of Hilton’s suggestion
was the FAT-algorithm. This innocent-looking algorithm, in fact, opened the flood gates
for both the development of the general folding procedures and the number theory that
grew out of the paper-folding.

After 1978 whenever Hilton visited SCU he went with Pedersen to visit the P61yas and
together they continued the tradition of mathematics, tea and cakes. In 1981 Hilton and
Pedersen, along with Alexanderson, cooperated with P61ya to bring out the Combined
Edition of Mathematical Discovery (see [P2])1°. During many of the tea parties at
P61ya’s home, P61ya talked about his idea of homologues, and on one occasion told us
that he had never written about them and that someday he would like us to write about
them - in fact, he extracted a promise from us that we would do so. Thus we are very
grateful to D6nes Nagy for giving us such a splendid opportunity to fulfill our promise
to our dear friend and teacher George P61ya, and to convey the flavor, and a few of the
details, of our friendly relationship with him.

lo Alexanderson updated the references, Hilton wrote a foreword, and Pedersen provided an expanded (and
less esoteric) index.
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