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SYMMETROSPECTIVE: A HISTORIC VIEW

THE BIRTH OF THE TUNNEL DIODE, AND
THE SEMICONDUCTOR SUPERLATTICE

Leo Esaki

Physicist (b. Osaka, Japan, 1925)

Address: Office of the President, University of Tsukuba, Tsukuba,
Ibaraki 305, Japan

Major award: Nobel Prize in Physics, 1973.

Abstract: The paper gives an insight in the history of two
discoveries by the author. Having looked back to the birth
of the tunnel diode, the reader is made acquainted with an

effect born with an idea of a special periodicity (translational symmetry) property,
namely the semiconductor superlattice, and how did it lead to physical applications.
Finally lessons are summarized.

DYNAMIC EVOLUTION IN SCIENCE AND TECHNOLOGY:
THE BIRTH OF THE TUNNEL DIODE

Recently, a friend of mine showed me a proceeding of a meeting held in Osaka, Japan
some forty-one years ago. Apparently, at that meeting, I gave a talk on the subject of
transistors. The year was 1953, and I was not yet thirty years of age. According to the
proceeding I began my speech with the following words:

“Since the beginning of this century, there has been great progress made in
telecommunications thanks to the tremendous advances in the vacuum tube. However,
we appear to be approaching the limits of progress in vacuum tube design and
production. Now that we have reached this stage, it can be said, quite ironically, that the
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vacuum tube itself has become the greatest obstacle to the next stage of dramatic
progress in the field of telecommunications.

I would like to talk a little today about semiconductor amplifiers, which made their
appearance with the promise to overcome the limitations of the vacuum tube. As you
know, these semiconductor amplifiers came to be known as transistors.

We first became aware of the transistor in 1948. Our source of information was a paper
jointly written by John Bardeen and Walter Brattain of Bell Telephone Laboratories,
which appeared in Physical Review, an American journal of physics. The term
‘transistor’ was used for the first time in the title of that paper and was described as a
semiconductor triode.”

As an aside, let me read you the words which appear below the bust of Alexander
Graham Bell, the inventor of the telephone, which stands in the foyer of the main
entrance to Bell Laboratories. “Leave the beaten track occasionally and dive into the
woods. You will be certain to find something that you have never seen before.” I
suppose that a number of great inventions and discoveries have been made by searching
in the woods. The transistor was one such case. The inventors, the aforementioned
Bardeen and Brattain, were awarded the Nobel Prize in 1956 along with William
Shockley for this, the most remarkable invention of the twentieth century.

It was in 1947 that I finished my studies at the Physics Department of Tokyo University
and moved on to life as a researcher. My area of research was vacuum tube materials,
and I was employed by Kobe Industries, a company, which no longer exists today.
Coincidentally, that was the same year the transistor was invented. Looking back on
history, the decade of the 1950s was quite remarkable. It was a period of technological
innovation in the field of electronics: The epoch-making evolution from vacuum tubes
to transistors led to a vast improvement in the performance of all electronic products,
including consumer-oriented goods, telecommunications and data processing. It is no
exaggeration to say that today's information oriented society was made possible by this
technological innovation. Japanese electronics industries played an important role in this
evolution and thus made a significant contribution to the economic growth in this

country.

I feel extremely fortunate to have started my career in the midst of such a period of
technological innovation. This environment stimulated me, encouraged me, and led me
to the work for which I would later be awarded the Nobel Prize. This example of
technological transformation stands as an important lesson for us. The transistor is
substantially different from the vacuum tube, and no amount of research and
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improvement of the vacuum tube could have led to the birth of the transistor. There is a
tendency, especially in the stable societies, to assume that the future is simply a natural
extension of the past and the present. However, during periods of great change,
innovations are born which have never existed before, and it is actually these
innovations which shape and form the future. Needless to say, it is the power of
creativity, which plays the decisive role in this process.

The powers of the human mind can be divided into two major categories. One is the
power of judicial mind, which allows human beings to understand fundamental
principles and to make discretionary judgements. The other is the power of the creative
mind. The former acts as our tool in analyzing, understanding, selecting, and making fair
judgements. The latter involves the ability to create new ideas through perceptiveness
and the creative process. It is this creativity which provides the engine for progress and
which has sustained the advance of human civilization.

Of course, it is through the mutual interaction of these two powers that a far greater
power is generated. If we say that creativity is individualistic and represents the
challenge of the future, then the power of discretion can be said to have a non-
individualistic aspect and can be essentially concerned with the body of existing
knowledge. Having said that, we must be aware of an important issue. That is the
academic education provided by our schools is primarily aimed at nurturing the judicial
mind. There is no assurance that schooling will necessarily contribute to the
development of the creative mind.

Let me again take you back to the 1950s. In 1957, I developed a semiconducting device
known as the Esaki tunnel diode. This diode could operate at very high speeds. But the
true novelty of this diode is that it was the first quantum electron device. Namely, the
wave nature of electrons was manifested for the first time in a semiconductor. This
constituted my doctoral thesis, and I was awarded the Nobel Prize in Physics in 1973 for
this achievement.

This new diode was highly acclaimed in the United States for its novelty. As a result, I
was given the opportunity to go and work in America. One interesting thing about the
tunnel diode is the way it was described by different people. Engineers said that I had
invented it, while scientists said that I had discovered it. The Nobel Prize called it a
discovery, as would be normal for the description of any scientific achievement. On the
other hand, the tunnel diode was an invention from the viewpoint of patents and
technologies. Inventions and discoveries both represent the fruits of our creative
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activities, but they clearly point to two different concepts. It is unusual to find
something that can be labeled both an invention and a discovery. For instance,
Antarctica was discovered, while the light bulb was invented. While I am certain that
my own prejudice is partly responsible for the conclusion that I draw from this fact, I
nevertheless believe that the tunnel diode stands at the intersection of science and
technology.

DO-IT-YOURSELF QUANTUM MECHANICS:
THE BIRTH OF THE SEMICONDUCTOR SUPERLATTICE
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Figure 1: Spatial variations of the conduction and valence band edges in two types of superlattices:
a doping, b compositional
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In 1969, research on artificially structured materials was initiated with a proposal for an
engineered semiconductor superlattice with a one-dimensional periodic potential by
Esaki and Tsu (1969 and 1970). In anticipation of advancement in controlled epitaxy of
ultra-thin layers, two types of superlattices were envisioned: Doping and compositional,
as shown at the top and bottom of Fig. 1, respectively.

Before arriving at the superlattice concept, we were examining the feasibility of
structural formation of potential barriers ad wells that were thin enough to exhibit
resonant tunneling (Bohm, 1951). A resonant tunnel diode (Iogansen, 1963) (Tsu and
Esaki, 1973) appeared to have more spectacular characteristics than the Esaki tunnel
diode (Esaki, 1958): the first quantum electron device consisting of only a single tunnel
barrier. It was thought that advanced technologies with semiconductors might be ready
for demonstration of de Broglie electron waves. Resonant tunneling can be compared to
the transmission of an electromagnetic wave through a Fabry-Perot resonator. The
equivalent of a Fabry-Perot resonant cavity is formed by the semiconductor potential
well sandwiched between the two potential barriers.

The idea of the superlattice occurred to us as a natural extension of double-, triple- and
multiple-barrier structures: The superlattice consists of a series of potential wells
coupled by resonant tunneling. An important parameter for the observation of quantum
effects in the structure is the phase-coherent length, which approximates the electron
mean free path. This depends on bulk as well as on the interface quality of crystals, and
also on the temperatures and values of the effective mass. As schematically illustrated in
Fig. 2, if characteristic dimensions such as superlattice periods or well widths are
reduced to less than the phase-coherent length, the entire electron system will enter a
mesoscopic quantum regime of low dimensionality, being in a scale between the
macroscopic and the microscopic. Our proposal was indeed to explore quantum effects
in the mesoscopic regime.

The introduction of the one-dimensional superlattice potential perturbs the band
structure of the host materials, yielding a series of narrow subbands and forbidden gaps,
which arise from the subdivision of the Brillouin zone into a series of minizones. Thus,
the superlattice was expected to exhibit unprecedented electronic properties. At the
inception of the superlattice idea, it was recognized that the long, tailored lattice period
provided a unique opportunity to exploit electric field-induced effects. The electron
dynamics in the superlattice direction was analyzed for conduction electrons in a narrow
subband of a highly perturbed energy-wave vector relationship. The result led to the
prediction of the occurrence of a negative differential resistance at a modestly high
electric field, which could be a precursor of the Bloch oscillation. The superlattice,
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apparently, allows us to enter the regime of electric field-induced quantization: The
formation of Stark ladders (James, 1949), (Wanniers, 1959 and 1960), for example, can
be proved in a (one-dimensional) superlattice (Shokley, 1972), whereas, in natural
(three-dimensional) crystals, the existence and real nature of these localized states in a
high electric field have been controversial (Zak, 1968 and 1991), (Rabinovitch and Zak,

1971).
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Figure 2: Schematic illustration of a ‘mesoscopic’ quantum regime (hatched) with a superlattice or
quantum wells in the inset.
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This was, perhaps, the first proposal, which advocated to engineer, with advanced thin-
film growth techniques, a new semiconductor material designed by applying the
principles of the quantum theory. The proposal was indeed made to the US Army
Research Office (ARO), a funding agency, in 1969, having daringly stated, with little
confidence in a successful outcome at the time, “the study of superlattices and
observations of quantum mechanical effects on a new physical scale may provide a
valuable area of investigation in the field of semiconductors”.

Although this proposal was favorable received by ARO, the original version of the paper
(Esaki and Tsu, 1969) was rejected for publication by Physical Review on the referee's
unimaginative assertion that it was ‘too speculative’ and involved ‘no new physics’. The
shortened version published in IBM J. Res. Develop. (Esaki and Tsu, 1970), was
selected as a Citation Classic by the Institute for Scientific Information (ISI) in July
1987. Our 1969 proposal was cited as one of the most innovative ideas at the ARO 40®
Anniversary Symposium, Durham, North Carolina, 1991.

At any rate, with the proposal, we initiated such a formidable task as to make a
‘gedanken-experiment’ a reality. In some circles the proposal was criticized as close to
impossible. One of the objections was that a man-made structure with compositional
variations in the order of several nanometers could not be thermodynamically stable
because of interdiffusion effects. Fortunately, however, it turned out that interdiffusion
was negligible at the temperatures involved.

In 1970, Esaki, Chang and Tsu (1970) studied a GaAs-GaAsysPos superlattice with a
period of 20 nm synthesizes with CVD (chemical vapor deposition) by Blakeslee and
Aliotta (1970). Although transport measurements failed to reveal any predicted effect,
the specimen probably constituted the first strained-layer superlattice having a relatively
large lattice mismatch. Early efforts in our group to obtain epitaxial growth of Ge,.Siy
and Cd, Hg,Te superlattices were soon abandoned because of rather serious
technological problems at that time. Instead we focused our research effort on
compositional GaAs-Ga; ,Al,As superlattices growth with MBE (molecular beam
epitaxy). In 1972, Esaki et al. (1972) found a negative resistance in such superlattices,
which was, for the first time, interpreted in terms of superlattice effect.

Following the derivation of the voltage dependence of resonant tunnel currents (Esaki,
1958), Chang, Esaki and Tsu (1974) observed the current-voltage characteristics with a
negative resistance. Subsequently, Esaki and Chang (1974) measured quantum transport
properties in a superlattice with a narrow bandwidth, which exhibited an oscillatory
behavior. Tsu et al. (1975) performed photocurrent measurements on superlattices
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subject to an electric field perpendicular to the plane layers with the use of a
semitransparent Schottky contact, which revealed their miniband configurations.

Heteroepitaxy is of great interest for the growth of compositional superlattices.
Innovations and improvements in epitaxial techniques such as MBE and MOCVD
(metallo organic chemical vapor deposition) have made it possible to prepare high-
quality heterostructures. Such structures possess predesigned potential profiles and
impurity distributions with dimensional control close to interatomic spacing. This great
precision has cleared access to the mesoscopic quantum regime (Esaki, 1986), (Esaki,
1991).

Since a one-dimensional potential can be introduced along with the growth direction,
famous examples in the history of one-dimensional mathematical physics, including the
above-mentioned resonant tunneling (Bohm, 1951), Kronig-Penney bands (1931),
Tamm surface states (1932), Zener band-to-band tunneling (1934), and Stark ladders
including Bloch oscillations (James, 1949), (Wannier, 1959 and 1960), (Shockley,
1972), all of which had remained more or less textbook exercises, could, for the first
time, be practiced in a laboratory. Thus, do-it-yourself quantum mechanics is now
possible, since its principles dictate the details of semiconductor structures (Esaki,
1992). '

RETROSPECTING TO THE TWO DISCOVERIES

We have witnessed remarkable progress in semiconductor research of superlattices and
quantumn wells over the last two decades. Our original proposal (Esaki and Tsu, 1969)
and pioneering experiments apparently triggered a wide spectrum of experimental and
theoretical investigations on this subject. A variety of engineered structures exhibited
extraordinary transport and optical properties, which may not even exist in any natural
crystal. Thus, this new degree of freedom offered in semiconductor research through
advanced material engineering has inspired many ingenious experiments, resulting in
observations of not only predicted effects but also totally unknown phenomena have
been found. As a measure of the growth of the field, Fig. 3 shows the number of papers
related to the subject and the percentage of the total presented at the biennial
International Conference on the Physics of Semiconductors. After 1972, when the first
paper (Esaki et al., 1972) came on the scene, the field went through a short period of
incubation and then experienced a phenomenal expansion in the 1980s. It appears that
nearly half of semiconductor physicists in the world are working in this area. Activity in
this new frontier of semiconductor physics has in turn given immeasurable stimulus to
device physics, provoking new ideas for applications. Thus, a new class of transport and



THE BIRTH OF THE TUNNEL DIODE AND THE SEMICONDUCTOR SUPERLATTICE 235

opto-electronic devices has emerged. In this interdisciplinary research, there have been
numerous beneficial cross-fertilizations. I hope this article provides some flavor of the
excitement associated with the birth of the semiconductor superlattice.
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Figure 3: Growth in relevant papers in the biennial International Conference on the Physics of
Semiconductors.

When I left IBM Research in New York and, after living in the United States for 32
years, I returned to Japan to take up my position as President of the University of
Tsukuba, was not a move I had anticipated. The call came when a group of Tsukuba
professors, who thought that the University needed ‘new blood’, nominated and elected
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me to be President. That was a minor revolution, which may upset some senior faculty
members at the University. The circumstances of my election were indeed most unusual:
I was the first president of any of Japan's 98 national universities to come from outside
academia, and, what's more, I was working and living outside Japan. As you know, the
country is rather famous for university inbreeding: the career path of choice is to obtain
all degrees from the same university and then to stay there as a professor in the footsteps
of the mentor. In view of this environment, my appointment was exceptional. In physics
terms, it was almost a forbidden transition.

Today, I find myself doing my best to navigate through the academic woods.

The University of Tsukuba is located at the center of Tsukuba Science City, a planned
community set up by the Japanese government three decades ago as a magnet for
scientific and technical talents. To date more than 40 national research institutes have
been drawn there - representing nearly half of the government's research facilities and
200 industrial laboratories. The High Energy Physics Laboratory (KEK), which you may
know, is also at Tsukuba ten minutes drive from my office. In this rather unique
environment, I am trying to increase collaboration and exchange with nearby national
institutes and industrial research laboratories. Among other things, I plan to expand and
strengthen Tsukuba's graduate education.

In closing, I would like to share with you a list of five ‘don't’-s which anyone with an
interest in realizing his or her creative potential should follow. Who knows, it may even
help you win a Nobel Prize.

Rule number one: Don't allow yourself to be trapped by your past experiences. If you
allow yourself to get caught up in social conventions or circumstances, you will not
notice the opportunity for a dramatic leap forward when it presents itself. Looking back
at the history of the Nobel Prize, you will notice that most of the laureates have received
the Nobel Prize for work they had done during their thirties. In my case I was 32 years
old when I developed the ‘Esaki tunnel diode’. The point that I am trying to make is that
younger people are able to look at things with a clear vision, one that is not clouded by
social conventions and past history.

Rule number two: Don't allow yourself to become overly attached to any authority in
your field - the great professor, perhaps. By becoming closely involved with the great
professor, you risk losing sight of yourself and forfeiting the free spirit of youth.
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Although the great professor may be awarded the Nobel Prize, it is unlikely that his
subordinates will ever receive it.

Rule number three: Don't hold on to what you don't need. The information-oriented
society facilitates easy access to an enormous amount of information. The brain can be
compared to a personal computer with an energy consumption of about 25 watts, In
terms of memory capacity or computing speed, the human brain has not really changed
since ancient times. Therefore, we must constantly be inputting and deleting
information, and we should save only the truly vital and relevant information. As the
president of a university, I had the opportunity to meet many people and to exchange
meishi (name card) with them. I try to discard the name cards as soon as possible, so that
I always leave maximum memory space open. I'm kidding, of course.

Rule number four: Don't avoid confrontation. I myself became embroiled in some
trouble with the company I was working for many years ago. At times, it is necessary to
put yourself first and to defend your own position. My point is that fighting is sometimes
unavoidable for the sake of self-defense.

Rule number five: Don't forget your spirit of childhood curiosity. It is the vital
component for imagination.

Having listed five rules, let me say that they do not constitute the sufficient conditions
for success. They are merely suggested guidelines. Good Luck!
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1. INTRODUCTION

In the course of our very pleasant correspondence with Professor Dénes Nagy about our
contribution to the Proceedings of The Third International Conference on Symmetry,
held in Washington D. C. in August 1995, the idea took shape of our writing two
articles about the symmetry of geometrical figures, one of a practical nature, the other of
a more theoretical nature. Thus this article is a companion to the article Symmetry in
Practice (in this issue), which describes very practical ways of constructing regular
polygons and polyhedra. We subtitle that article Recreational Constructions — and refer
to it henceforth as [Rec] - because the constructions, involving the use of colored paper,
have an undoubted recreational flavor. However, it is our conviction, based on many
years' experience, that the execution of such model constructions can play a vital role in
enlivening and enriching the study of geometry, especially if the mathematical theory
underlying the constructions features prominently. Thus it is our strong hope that
readers of [Rec] will be encouraged to move on to this more theoretical sequel, to learn
why the constructions work and better to understand the nature of symmetry. We also
set the mathematical development in its historical context and show explicitly how the
geometry is related to other parts of mathematics — real analysis, number theory, group
theory, combinatorics. Such connections should, in our view, form an integral part of
_ the teaching and learning of any part of mathematics. We will refer to the present
article, briefly, as [Math].
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In Section 2 we link the practical instructions of [Rec] to a mathematical discussion of
the parameters of the polygons constructed. Thus we answer two questions which stand
in a converse relation to each other, namely, (i) given the folding instructions for our
tape, when will we be able to produce a regular convex polygon and how many sides
will it have, and (ii) given a number p, what folding instructions will produce a regular
p-sided polygon (or p-gon)?

Having learnt in Section 2 how to construct certain regular figures, we turn in Section 3
to the question of just what we should understand by the symmetry of a geometrical
figure, and how it should be measured. From a mathematical point of view it makes
very little sense to say that a given figure A is symmetrical,’ but we have a precise idea
of its group of symmetries, that is, of the subgroup of the group of Euclidean
movements of the ambient space of A under which A is invariant. Based on this idea, we
can give meaning to the statement that figure A is more symmetrical than figure A’.
However, we need to bear in mind that the symmetry group of A depends on our
convention as to what is the ambient space of A. Thus if A is a circle, then its symmetry
group as a subset of the plane depends on whether we allow reflexions of the plane or
not (note that a reflexion of the plane cannot be achieved by a movement in the plane,
but only by a movement in 3-dimensional space).

Another important aspect of symmetry arises when one considers actual physical
models of geometrical configurations. Suppose we have constructed a model M of the
figure A by braiding together colored strips; A may be a regular dodecahedron, say. Our
model cannot have more symmetry than A itself — but it may well have less. For to
every symmetry g of A we have a movement of the model M which may create an
image Mg recognizably different from M because of the arrangement of colors. Thus the
symmetry group of M may only be a subgroup of the symmetry group of A; and
aesthetics come into the story here by requiring the symmetry group of M to be as large
as possible. Thus can mathematics contribute to the study of aesthetics!

It turns out (not surprisingly!) that, if B is a subset of A and if G, is the symmetry group
of A, then the set of images of B under the action of elements of G, is the set of
homologues of B in the sense of George Pélya; we explain this in Section 4. Actually,
Pélya never wrote down his work on homologues (which, so far as we know, he only
discussed in the case where A is a Platonic solid), but, when he was a very old man, he

! We might perhaps say that A is symmetrical if there is a non-trivial Euclidean movement sending A to itself.
A classification of symmetricality due to Kepler is to be found in [C2].
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asked us to write it down for him, and we are proud and happy to have this opportunity
to do so (see Figure 9 of for the only extant copy of his original notes on the subject).

In Section 5 we explain Pélya's famous Enumeration Theorem, one of the most
important theorems of that branch of mathematics known as combinatorics. We apply it
to the symmetries of geometrical figures, where parts of the figures are colored in
prescribed ways, and again recover the notion of homologue from the formulation of the
theorem.

The final section is an informal epilogue, describing our relationship with George Pélya.
We are grateful to Dénes Nagy for inviting us to write these two articles, [Rec] and
[Math], and for persuading us to include some personal reflections on our good fortune
in knowing that remarkable man so well.

2. 2-PERIOD FOLDING PROCEDURES FOR CONSTRUCTING
REGULAR POLYGONS AND A GENERALIZATION

We agreed in [Rec] that, however symmetry is defined, the most symmetric polygons
are the regular polygons, both the regular convex polygons and the regular star polygons
(see [C1] ). This is our justification for devoting this section to a particularly easy way
of constructing examples of such polygons; in fact, we will confine ourselves, in this
article, to the construction of regular convex polygons. The practical problems of such
constructions are discussed in our’companion article [Rec].

To set our problem in its historical context, we should really begin with the Greeks and
their fascination with the challenge of constructing regular convex polygons. We will
refer to such p-sided polygons as regular convex p-gons, and we may even suppress the
word convex if no confusion would result. The Greeks, working on these problems
about 350 B.C., restricted themselves to constructions using only what we call
Euclidean tools, namely an unmarked straightedge and a compass. No doubt the Greeks
would have liked to be able to describe Euclidean constructions whenever possible.
However, they were only able to provide such constructions for regular convex
polygons having p sides, where
p =2, withpy=1, 3, 5, or 15.

About 2,000 years later Gauss (1777 — 1855) showed that Euclidean constructions were
possible only rarely. He proved that a Euclidean construction is possible if and only if
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the number of sides p is of the form p = 2°[1p;, where the p, are distinct Fermat primes —

that is, primes of the form F, = 2% +1.

Gauss's discovery was remarkable — it tells us precisely which regular p-gons admit a
Euclidean construction, provided, of course, that we know which Fermat numbers F,
are prime. In fact, not all Fermat numbers are prime. Euler (1707 — 1783) showed that

5
Fs = 2% +1 is not prime, and although many composite Fermat numbers have been
identified, to this day the only known prime Fermat numbers are

Fo=3,F1=5,F,=17, F3=257 and F, = 65537.

Thus, even with Gauss's contribution, there exists a Euclidean construction of a regular
p-gon for very few values of p, and even for these p we do not in all cases know an
explicit construction. For example, in The World of Mathematics [N] we read:

Simple Euclidean constructions for the regular polygons of 17 and 257 sides
are available, and an industrious algebraist expended the better part of his
years and a mass of paper in attempting to construct the F regular polygon of
65,537 sides. The unfinished outcome of all this grueling labor was piously
deposited in the library of a German university.

Despite our knowledge of Gauss's work we still would like to be able to construct
(somehow) all regular p-gons. Our approach is to redefine the question so that, instead
of exact constructions, we will ask for which p = 3 is it possible, systematically and
explicitly, to construct an arbitrarily good approximation to a regular p-gon? We take it
as obvious that we can construct a regular p-gon exactly if p is a power of 2. What we
will show is that it is possible, simply and algorithmically, to construct an
approximation (to any degree of accuracy) to a convex p-gon for any value of p 2 3. In
fact, we will give explicit (and uncomplicated) instructions involving only the folding of
a straight strip of paper tape in a prescribed periodic manner.

Although the construction of regular convex p-gons would be a perfectly legitimate goal
by itself, the mathematics we encounter is generous and we achieve much more. In the
process of making what we call the primary crease lines used to construct regular
convex p-gons we obtain tape which can be used to fold certain (but not all) regular star
polygons. It is not difficult to add secondary crease lines in order to obtain tape that
may be used to construct the remaining regular star polygons.

As it turns out, the mathematics we encounter, in validating our folding procedures,
leads quickly and naturally to questions, and hence to new results, in number theory.
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Those interested may consuit [HP3]. In the interests of mathematical simplicity, as we
have said, we will confine attention, in this article, to convex polygons. The more
ambitious reader, interested in star polygons, may consult [C1, HP2, 3].

Let us begin by explaining a precise and fundamental folding procedure, involving a
straight strip of paper with parallel edges (adding-machine tape or ordinary
unreinforced packaging gummed tape work well), designed to produce a regular convex
p-gon. For the moment assume that we have a straight strip of paper that has creases or
folds along straight lines emanating from vertices, which are equally spaced, at the top
edge of the tape. Further assume that the creases at those vertices, labeled A, on the top
edge, form identical angles of 7/p with the top edge, as shown in Figure 1(a). If we fold
this strip on A,:Aq+2, as shown in Figure 1(b), and then twist the tape so that it folds on
A A1, as shown in Figure 1(c), the direction of the top edge of the tape will be rotated
through an angle of 2n/p. We call this process of folding and twisting the FAT-
algorithm.

Figure 1

Now observe that if the FAT-algorithm is performed on a sequence of angles, each of
which measures 7/p, at the first p of a number of equally spaced locations along the top
of the tape, in our case at A, forn =0, 1, 2, ..., p-1, then the top edge of the tape will
have turned through an angle of 27, so that the point A, will then be coincident with A,.
Thus the top edge of the tape visits every vertex of a regular convex p-gon, and thus
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itself describes a regular p-gon. A picture of the tape with its crease lines, and the
resulting start of the construction of the regular p-gon, is given in Figure 2. Notice that
we have not adhered there to our systematic enumeration of the vertices on the two
edges of the tape that play a role in the construction. (The enumeration has served its

purpose!)

Notice, too, that if we had the strip of paper shown in Figure 2(a), with its crease lines,
we could then introduce secondary crease lines bisecting each of the angles nearest the
top edge of the tape and this tape could then be used to construct a regular 2p-gon with
the FAT-algorithm. We could then, in principle, repeat this secondary procedure, as
often as we wished, to construct regular 4p-gons, 8p-gons,... It is for this reason that we
only need to concern ourselves with devising primary folding procedures for regular
polygons having an odd number of sides in order to be able to assure ourselves we can,
indeed, fold all regular polygons.

Figure 2

Now, since the regular convex 7-gon is the first polygon we encounter for which we do
not have available a Euclidean construction, we are faced with a real difficulty in
making available a crease line making an angle of #/7 with the top edge of the tape. We
proceed by adopting a general policy, that we will eventually say more about - we call it
our optimistic strategy. Assume that we can crease an angle of 27/7 (certainly we can
come close) as shown in Figure 3(a). Given that we have the angle of 27/7, then simply
folding the top edge of the strip DOWN to bisect this angle will produce two adjacent
angles of z/7 at the top edge as shown in Figure 3(b). (We say that /7 is the putative
angle on this tape.) Then, since we are content with this arrangement, we go to the
bottom of the tape, and now we really start the folding procedure.



SYMMETRY IN THEORY 245

We observe that the angle to the right of the last crease line is 62/7 — and our policy, as
paper folders, is that we always avoid leaving even multiples of 7 in the numerator of
any angle next to the edge of the tape, so we bisect this angle of 67/7, by bringing the
bottom edge of the tape UP to coincide with the last crease line as shown in Figure 3(c).
We settle for this (because we are content with an odd multiple of 7 in the numerator)
and go to the top of the tape where we observe that the angle to the right of the last
crease line is 47/7 — and, in accordance with our stated policy, we bisect this angle
twice, each time bringing the top edge of the tape DOWN to coincide with the lase
crease line, obtaining the arrangement of crease lines shown in Figure 3(d). But now we
notice something miraculous has occurred! If we had really started with an angle of
exactly 27/7, and if we now continue introducing crease lines by repeatedly folding the
tape UP once at the bottom and DOWN twice at the top, we get precisely what we want;
namely, pairs of adjacent angles, measuring n/7, at equally spaced intervals along the
top edge of the tape. Let us call this folding procedure the U'D* or D*U'-folding
procedure and call the strip of creased paper it produces® U' D or D*U'-tape.

2=
(a)
S '—2.5'
o e
7 e
B o
]
".:: ______ .g.. :;' 4n
\.‘:g_ ......... s 7
(©)

2 It is our habit to refer to D*U'-tape, but this choice is quite arbitrary.
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We soggest that before reading further you get a piece of paper and fold an acute angle
that you regard as a good approximation to 27/7. Then fold about 40 triangles using the
D*U'-folding procedure just described, throw away the first 10 triangles, and try to
construct the FAT 7-gon shown in Figure 4(b). You will have no doubt that what you
have created is, in fact, a 7-gon, but you may wonder why it should have worked so
well. In other words, how can we prove that this evident convergence must take place?
One approach is to admit that the first angle folded down from the top of the tape in
Figure 3(a) might not have been precisely 27/7. Then the bisection forming the next
crease would make two acute angles nearest the top edge in Figure 3(b) only
approximately 7/7; let us call them 7/7 + £ (where € may be either positive or negative).
Consequently the angle to the right of this crease, at the bottom of the tape, would
measure 671/7 - £&. When this angle is bisected, by folding up, the resulting acute angles
nearest the bottom of the tape, labeled 3277 in Figure 3(c), would, in fact, measure
3n/7-e/2, forcing the angle to the right of this crease line at the top of the tape to have
measure 47/7 + &2. When this last angle is bisected twice by folding the tape down, the
two acute angles nearest the top edge of the tape will measure 777 + 772>, This makes it
clear that every time we repeat a D’U'-folding on the tape the error is reduced by a
factor of 2°.

fa¥

Figure 4

Now it should be clear how our optimistic strategy has paid off. By blandly assuming
we have an angle of 7/7 to begin with, and folding accordingly, we gef what we want ~
successive angles at the top of the tape which, as we fold, rapidly get closer and closer
to 71/7! A truly remarkable vindication of our optimistic strategy!

In practice the approximations we obtain by folding paper are quite as accurate as the
real world constructions with a straight edge and compass - for the latter are only
perfect in the mind. In both cases the real world result is a function of human skill, but



SYMMETRY IN THEORY 247

our procedure, unlike the Euclidean procedure, is very forgiving in that it tends to
reduce the effects of human error — and, for many people, it is far easier to bisect an
angle by folding paper than it is with a straight edge and compass.

Observe that it is in the nature of the folding procedure that we will always be folding
DOWN a certain number of times at the top and then folding UP a certain (not
necessarily the same) number of times at the bottom and then folding DOWN (possibly
an entirely new) number of times at the top, etc. Indeed, a typical folding procedure may
be represented by a sequence of exponents attached to the letters DU DU DU DU... the
sequence stopping to avoid simply repeating a given finite string of exponents. The
length of the repeat for the exponents is called the period of the folding procedure.
(Thus the folding that produced the 7-gon is called a 2-period folding procedure.) It is
an important fact that, for every odd p, a regular p-gon may be folded by instructions so
encoded. It is thus very natural to ask what regular p-gons can be produced by the 2-
period folding procedure?

In the process of answering this question we make straightforward use of the
following:®

Lemma 2.1 For any three real numbers a, b and xo, with a # 0, let the sequence {x;}, k =
0,1,2,... be defined by the recurrence relation
Xtax=bk=0,1,2,. 2.1

Then iflal > 1, x;, = b/(1+a) as k —> oo,

Proof:  Set x; = bl(1+a) + y;. Then y, + ay.; = 0. It follows that y, = ((-1)/a)*yo.
If lal > 1, (-)/a)* = 0, so that yr = 0 as & — oo. Hence x;, — b/(1+a) as
k — 0. Notice that y, is the error at the k™ stage, and that the absolute value of
e is equal to lygl/alt.

This result is the special linear case of the Contraction Mapping Principle (see [W]). We
point out that it is significant that neither the convergence nor the limit depends on the
initial value xg. This implies, in terms of the folding, that the process will converge, and
to the same limit, no matter how we fold the tape to produce the first line — this is what
justifies our optimistic strategy! And, as we have seen in our example, and as we will
soon demonstrate in general, the result of the lemma tells us that the convergence of our
folding procedure is rapid, since in all cases lal will be a positive power of 2.

* This lemma is actually applicable to folding procedures of arbitrary period.
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Fold down n times
——

.,

W

o k

Fold up n times

k™ stage (1-period folding)
(a)

Fold down m times

Fold up n times

&™ stage ( 2period folding)
()

Figure 5

Now we will look at the general 2-period folding procedure, D™U", In this case a typical
portion of the tape would appear as shown in Figure 5(b). If the folding process had
been started with an arbitrary angle u, at the top of the tape we would have, at the k™
stage,
U + 2"Vk =7,
Vi + 2'"uk+1 =T,
and hence it follows that
Uy - 2'"+"uk+1 = 71'(1-2"), k= 0,1,2,...
Thus, using Lemma 2.1, we see that
2" —1
Uuypy— —————m as k— oo
2m+n __I

n

so that

17r is the putative angle an/b. Thus the FAT-algorithm will produce,

from this tape, a star {b/a}-gon, where the fraction b/a may turn out not to be reduced
(for example when m = 4, n = 2), with a = 2"-1, b = 2™""-1. By symmetry we infer that
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2" -1
Vg— ————T as k— oo
2m+n _1

Furthermore, if we assume an initial error E, then we know that the error at the k™ stage
(when folding D™U" has been done exactly k times) will be given by E, = Ey/2™".
Hence, we see that in the case of our D2U1—folding (Figure 3) any initial error Ej is, as
we already saw from our initial argument, reduced by a factor of 2° between
consecutive states. It should now be clear why we advised throwing away the first part
of the tape — but, likewise, it should also be clear that it is never necessary to throw
away very much of the tape. In practice, convergence is very rapid indeed, and if one
made it a rule of thumb always to throw away the first 20 crease lines on the tape for
any iterative folding procedure, one would be absolutely safe.

We have seen that the D™U"-folding procedure, or, as we may more succinctly describe
it, the (m, n)-folding procedure, produces angles 7i/s on the tape, where

m+n _
s= 21 (22)
2" -1

Notice that when n = m the folding becomes, technically, a 1-period folding procedure

m+n _
which produces a regular s-gon, where s = —n—l = 2"+1. Thus we see, immediately,
2

that the D"U"-folding will produce tape to which the FAT-algorithm can be applied to
obtain regular (2"+1)-gons. These constructions provide approximations to many (but
not all) of the polygons the Greeks and Gauss were able to construct with Euclidean
tools. We can certainly construct a regular polygon whose number of sides is a Fermat
number, but (see [Rec]) it is never possible to construct, with a 1-period folding those
regular polygons where the number of sides is the product of at least two distinct Fermat
numbers (thus, 15 serves as the first example where we find trouble).

The polygons which are of most interest to us in the construction of regular polyhedra
are those with 3 or 5 sides (since we have exact constructions for the square). Our
companion article [Rec] of this issue contains very explicit instructions of the folding
procedures that produce the D'U'- and the D*UP-tape (which can be used to construct 3-
and 5- gons, respectively) along with equally explicit instructions for building some
braided polyhedra from the tape produced. The reader is encouraged to at least peruse
that part of this issue before going on, since we will be making references to some of the
models whose construction is described there in the next section.
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Before we begin the discussion of symmetry let us finish explaining how you might
construct those regular polygons that cannot be folded by the 1- or 2-period folding
procedures. For example, suppose we wanted to construct a regular 11-gon. Our
arguments in [HP1, 2 or 3] show that no 2-period (or 1-period) folding procedure can
possibly produce an 11-gon.

In fact, the example of constructing the regular 11-gon is sufficiently general to show
the construction of any regular p-gon, with p odd. So let us demonstrate how to
construct a regular 11-gon. we proceed as we did in the construction of the regular 7-
gon (in Section 2) — we adopt our optimistic strategy (which means that we assume
we've got what we want and, as we will show, we then actually get what we want!).
Thus we assume we can fold an angle of 27/11. We bisect it by introducing a crease
line, and follow the crease line to the bottom of the tape. The folding procedure now
commences at the bottom of the tape. Thus

(1) Each new crease line goes in the forward (left to right) direction along the tape;

(2) Each new crease line always bisects the angle between the last crease line and the
edge of the tape from which it emanates;

(3) The isection of angles at any vertex continues until a crease line produces an angle
of the form an/11 where a is an odd number; then the folding stops at that vertex

and commences at the intersection point of the last crease line with the other edge
of the tape.

Once again the optimistic strategy works and our procedure results in tape whose angles
converge to those shown in Figure 6(b). We could then denote this folding procedure by
U'D'UPD' U'D’... interpreted in the obvious way on the tape — that is, the first exponent
"1" refers to the one bisection (producing a line in the upward direction) at the vertices
Agn (for n =0, 1, 2,...) on the bottom of the tape; similarly the next "1" refers to the
bisection (producing a crease in the downward direction) made at the bottom of the tape
through the vertices Ag,y; etc. However, since the folding procedure is duplicated
halfway through, we can abbreviate the notation and write simply {1,1,3}, with the
understanding that we alternately fold from the bottom and top of the tape as described,
with the number of bisections at each vertex running, in order, through the values 1, 1,
3, ... We call this a primary folding procedure of period 3 or a 3-period folding, for
obvious reasons. The crease lines made during this procedure are called primary crease
lines.
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Figure 6 (Note that the indexing of the vertices is not the same as that in Fig. 1).

Our argument, as described for p = 11, may clearly be applied to any odd number p.
However, our tape for the 11-gon has a special symmetry as a consequence of its odd
period; namely that if it is "flipped" about the horizontal line halfway between its
parallel edges, the result is a translate of the original tape. As a practical matter this
special symmetry of the tape means that we can use either the top edge or the bottom
edge of the tape to construct our polygons. On tapes with an even period the top edge
and the bottom edge of the tape are not translates of each other (under the horizontal
flip), which simply means that care must be taken in choosing the edge of the tape used
to construct a specific polygon.

A proof for the convergence for the general folding procedure may be given that is
similar to the one we gave for the primary folding procedure of period 2, using Lemma
2.1. Alternatively one could revert to an error-type proof like that given for the 7-gon.
We leave the details to the reader.

For further reading, and a discussion of the construction of star polygons see [HP2, 3
and 5].

3. THE SYMMETRY GROUP OF A GEOMETRIC CONFIGURATION

We want now to take up the more mathematical aspects of symmetry. Indeed, at this
stage, we lack a precise definition of symmetry — we cannot even give a meaning, in
general, to the statement that one geometrical figure is more symmetric than another. Of
course, a square is more symmetric than an arbitrary rectangle, and a rectangle is more
symmetric than an arbitrary quadrilateral. But can we, for example, always compare the
symmetries of regular polygons?
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We are guided in our definitions by the approach of the great German mathematician
Felix Klein (1849 — 1925) to understanding the nature of geometry. Consider, for
example, the usual plane Euclidean geometry, in which we study the properties of
planar figures which are invariant under certain Euclidean motions. These motions
certainly include translation and rotation, but it is a matter of choice whether they
include reflexion. For example the FAT 7-gon (Figure 4(b)) is invariant under rotations
through 27/7 about its center, but not under reflexion in its plane. Thus, to define our
geometry, we must decide whether we allow Euclidean motions which reverse
orientation. Of course, it we allow certain Euclidean motions, we must also allow
compositions and inverses of such motions, so we postulate a certain group G of
allowed motions. If A is a planar figure, then, for any g € G, Ag is again a planar figure
and, in the G-geometry of A, we study the properties of the figure A which it shares with
all the figures Ag as g varies over G; such properties are called the G-invariants of A,
abbreviated to invariants if the group G may be understood.

Example 3.1 Let G be the group of motions of the plane generated by translations,
rotations and reflexions (in a line); we call this the Euclidean group in 2 dimensions and
may write it E;. Then the Euclidean geometry of the plane is the study of the properties
of subsets of the plane which are invariant under motions of E,. For example, the
property of being a polygon is a Euclidean property; the number of vertices and sides of
a polygon is a Euclidean invariant. On the other hand, as we have hinted, orientation is
not invariant with respect to this group, though it would be if we disallowed reflexions.
Thus, by means of a motion in E, the triangle ABC may be turned over (flipped) to form

the triangle A'B'C" as shown in Figure 7. But the orientation of the triangle 4BC is anti

clockwise, while the orientation of the triangle A4'B'C" is clockwise.

Fotd s

Figure 7: The triangle ABC may be transformed by a rotation in 3 dimensions into the triangle A'B'C’
reversing the orientation of the triangle.

Example 3.2 We may 'step up a dimension', passing to the group E; of Euclidean
motions in 3-dimensional space. Notice that it is natural to think of reflexions in a line
(of a planar figure) as a 'motion’ since it can be achieved by a rotation in some suitable
ambient 3-dimensional space containing the plane figure. However, it requires a greater
intellectual effort to think of reflexion in a plane (of a spatial figure) as a motion in
some ambient 4-dimensional space! Who would think of turning the golden
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dodecahedron (see Figure 8 of [Rec]) inside out? Thus it is common not to include such
reflexions in defining 3-dimensional geometry. This preference is, however, a
consequence of our experience of living in a 3-dimensional world and has no
mathematical basis. However, since, in this article, and its companion article, we are
highlighting the construction of actual physical models of geometrical configurations, it
is entirely reasonable to omit 'motions' to which the models themselves cannot be
subjected.

We now introduce the key idea in the precise definition of symmetry. Let a geometry be
defined on the ambient space of a geometric configuration A by means of the group of
motions G. Then the symmetry group of A, relative to the geometry defined by G, is the
subgroup G, of G consisting of those motions g € G such that Ag = A, that is, those
motions which map A onto itself, or, as we say, under which A is invariant. Thus, for
example, if our geometry is defined by rotations and translations in the plane, and if A is
an equilateral triangle, then its symmetry group G, consists of rotations about its center
through 0’, 120°, and 240’; if, in our geometry, we also allow reflexions, then the
symmetry group has 6 elements instead of 3, and is, in fact, the very well-known group
S, called the symmetric group on 3 symbols — the symbols may be thought of as the
vertices of the triangle. We must repeat for emphasis that the symmetry group G, of the
configuration A is a relative notion, depending on the choice of 'geometry' G.

It is plain that no compact (bounded) configuration can possibly be invariant under a
translation. Thus when we are considering the symmetry group of such a figure we may
suppose G to be generated by rotations and, perhaps, reflexions. Moreover, any such
motion in the plane is determined by its effect on 3 independent points and any such
motion in 3-dimensional space is determined by its effect on 4 independent points.
Since a (plane) polygon has at least 3 vertices and a polyhedron has at least 4 vertices,
and since any element of the symmetry group of a polygon or a polyhedron must map
vertices to vertices, it follows that the symmetry group of a polygon or a polyhedron is
finite (compare the symmetry groups of a circle or a sphere).

The symmetry group of any polygon with » sides is, by the argument above, a subgroup
of S,, the group of permutations of n symbols, also called the symmetric group on n
symbols. If G is generated by rotations alone, and the polygon is regular, this group is
the cyclic group of order n, often written C,, generated by a rotation through an angle of
2n/n radians about the center of the polygonal region. If G also includes reflexions, this
group has 2n elements and includes 7 reflexions; this group is called a dikedral group
and is often written D,,.
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In discussing the symmetry groups of polyhedra, we will, as indicated above, always
assume that the geometry is given by the group G generated by rotations in 3-
dimensional space. Then the symmetry group of the regular tetrahedron is the so-called
alternating group A, In general, A, is the subgroup of S, consisting of the even
permutations of n symbols; it is of index 2 in §,, that is, its order is half that of S, or
n!/2. Thus the order of A, is 12. The cube and the regular octahedron have the same
symmetry group, namely Ss. It is easy to see why the symmetry groups are the same; for
the centers of the faces of a cube are the vertices of a regular octahedron, and the centers
of the faces of a regular octahedron are the vertices of a cube. Likewise, and for the
same reason, the regular dodecahedron and the regular isocahedron have the same
symmetry group, which is As. It is a matter of great interest and relevance here that the
symmetries of the Diagonal Cube and the special braided octahedron of Figure 7 and
Figure 16, respectively (of [Rec]) each permute the four braided strips from which the
models are made. This provides a beautiful explanation of why their symmetry group is
the symmetry group .S;.

We are now in a position to give at least one precise meaning to the statement "Figure A
is more symmetric than Figure B". If it happens that the symmetry group G, of A strictly
contains the symmetry group Gp of B, then we are surely entitled to say that A is more
symmetric than B. Notice that the situation described may, in fact, occur because B is
obtained from A by adding features which destroy some of the symmetry of A. For
example, the coloring of the strips used to construct the braided Platonic solids of
Figure 6 of [Rec] will reduce the symmetry in all cases but that of the cube.

However, the definition above is really too restrictive. For we would like to be able to
say that the regular n-gon becomes more symmetric as n increases. We are thus led to a
weaker notion which will be useful provided we are dealing with figures with finite
symmetry groups (e.g., polygons and polyhedra). We could then say — and do say — that
A is more symmetric than B if G4 has more elements than Gz. Thus we have, in fact,
two notions whereby we may compare symmetry — and they have the merit of being
consistent. Indeed, if A is more symmetric than B in the first sense, it is more symmetric
than B in the second sense — but not conversely.

Notice that we deliberately avoid the statement — often to be found in popular writing —
"A is a symmetric figure"”. We regard this statement as having no precise meaning!
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4. HOMOLOGUES

George Pélya, who made great contributions not only to mathematics itself, but also to
the understanding of how and why we do mathematics — or perhaps one should say ‘how
and why we should do mathematics' — was particularly fascinated by the Platonic solids
and first introduced his notion of homologues in connection with the study of their
symmetry; they later played an important role in one of his most important contributions
to the branch of mathematics know as combinatorics, namely, the Pélya Enumeration
Theorem (see [P1] for an intuitive account). Let us describe this notion of homologues
in terms of symmetry groups. We believe that we are thereby increasing the scope of the
notion and entirely maintaining the spirit.

Let A be a geometrical configuration with symmetry group Gy, and let B be a subset of
A. Thus, for example, A may be a polyhedron and B a face of that polyhedron. We
consider the subgroup Gyp of G, consisting of those motions in the symmetry group G,
of A which map B to itself. Now subgroups partition a group into cosets: If K is a
subgroup of H, we define a (right) coset of K in H as a collection of elements kh, with A
fixed and k varying over K. We call h a representative of this coset, which we write Kh.
Any two cosets Kh, Kh" are either disjoint or identical (this is easy to prove), so we may
imagine that we have picked a set of coset representatives, one for each coset. In the
case in which we are interested the group H is finite so we may write, for some m

m
H= U Kh,, 4.1
1=l

where it is understood that the union is disjoint. Notice that m, which appears in (4.1)
and which we call the index of K in H, is just the ratio of the order of H to the order of
K. An example was provided earlier with H = S, the symmetric group, and K = A,, the
alternating group. Then m = 2.

Reverting to our geometrical situation, we consider a coset of Gap in G,, that is, a set
Gagg, & € G4 Every element in G4pg sends B to the same subset Bg of A. The collection
of these subsets is what Pélya called the collection of homologues of B in A. We see that
the set of homologues of B is in one-one correspondence with the set of cosets of G5 in
GA.

Example 4.1 Consider the pentagonal dipyramid A of Figure 5(b) of [Rec]. We may
specify any motion in the symmetry group of A by the resulting permutation of its
vertices 1, 2, 3, 4, 5, 6, 7. In fact, G, is the dihedral group Ds, with 10 elements, given
by the following permutations sending (1 2 3 4 5 6 7), resepectively, to
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f — (123456 7) (Identity)
— (234567 1) (rotation through 27/5 about axis 67)
— (3451267
— (4512367
) —(5123467)
— (543217 6) (interchanging top and bottom)
— (432156 7) (interchange plus rotation through 27/5)
— (3215467
—(2154376)
\—(1543276)

First, let be the edge 16. Then G4p = {Id}, since only the identity sends the subset (1, 6)
to itself. Thus the index of G4p in G4 is 10, and there are 10 homologues of the edge 16;
these are the 10 'spines’ of the dipyramid (i.e., we exclude the edges around the equator).
Second, let B be the edge 12. Then G,p has 2 elements, since there are two elements of
G,, namely the identity and permutation (1234567) — (2154 3 7 6), which send
the subset (1, 2) to itself. Thus the index of G4z in G, is 5, and there are 5 homologues
of the 12; these are the 5 edges around the equator.

Third, let B be the face (126). Then G4p = {Id}, so that, as in the first case, there are 10
homologues of the face (126); in other words all the (triangular) faces are homologues.

Let us now explain the Pélya Enumeration Theorem - actually, there are two theorems -
and see how the notion of homologue fits into the story.

5. THE POLYA ENUMERATION THEOREM

Let X be a finite set; the reader might like to keep in mind the set of vertices (or edges,
or faces) of a polygon or polyhedron; and let G be a finite symmetry group acting on X.
Suppose X has r elements, and that G has m elements; we write X| = n, |Gl = m. We

may represent the elements of the set X by the integers 1, 2, ..., n. If g € G, then g acts
as a permutation of {1, 2, ..., n}. Now every permutation is uniquely expressible as a
composition of cyclic permutations on mutually exclusive subsets of the elements of X.

For example, the permutation
1234567891011
2471311568109 é.1)

is the composite (1 2 4)(3 7 5)(9 8 6 11)(10), where, e.g., (1 2 4) denotes the cyclic

permutation
124
241
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Thus the permutation (5.1) is the composite of one cyclic permutation of length 1, two
cyclic permutations of length 3, and one cyclic permutation of length 4, the cyclic
permutations acting on disjoint subsets of the set X. In general a permutation of X has
the type (ay, ay, ... , a,} if it consists of q; permutations of length 1, a, permutations of
length 2, ... , a, permutations of length n, the permutations having disjoint domains of

n
action; notice that 2 a, = n. For example the permutation (5.1) has the type
=1
{1,0,2,1,0,0, 0,0, 0, 0, 0}. If g has the type {a;, a,, ... , a,}, we define the cycle index of
g to be the monomial
Z(g) = Z(g; X1,X2, -+ » Xn) = X1"1X2"2 o0 X'

The cycle index of G is Z(g) = 1 ZZ (g2).
m
geG
We give an example which we will revisit periodically throughout this section.

Example 5.1 We consider the symmetries of the square as shown in Figure 8.

1 2

4 3

Figure 8: We denote this labeling of the square by 1234

The group G of symmetries is a group of order 8, which we describe by permutations of
the set of vertices {1, 2, 3, 4}. Thus

g1 (Identity) (1234)—(1234) cycleindex xn*

) (1234)—(2341) cycleindex X4
& (1234)—>(3412) cycle index X
g4 (1234)—>(@4123) cycleindex X4
gs (1234)—(3214) cycle index x1°x,
8 (1234)—(1432) cycle index X%y
g7 (1234)—>(2143) cycle index X2
gs (1234)—(@4321) cycle index Xy

Thus the cycle index of G is Ot + 2% 2xp+ 3x27 4 2x0)/8.
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Now suppose we want to color the elements of X; that is, we have a finite set ¥ of
colors, [Y1=r, and a coloring of X is a function® f:X— Y. Forany g € G, we regard the
colorings f and fg as indistinguishable or equivalent; and a pattern is an equivalence
class of colorings. Then Pélya's first theorem is as follows.

Theorem 5.1 The number of patterns is Z (G; r, r, ..., 1).

Example 5.1 (continued) Suppose the vertices are to be colored red or blue. Then r =2,
and the number of patterns is (16 + 16 + 12 + 4)/8 = 6. In fact, the patterns are
represented by the 6 colorings: RRRR, BRRR, BBRR, BRBR, RBBB, BBBB.

RpmR BwmR BmwB BmR RmB EBmB
R.R R.R R.R R.B B.B B.B

We now describe Pélya's second theorem. This is really the 'big' theorem and the first
theorem is, in fact, deducible from it. Let us enumerate the elements of Y (the 'colors') as

yl, )72, ey yr~

,

Theorem 5.2 Evaluate Z(G; xq, X3, ... , x,) at x, = 2 y', . Then the coefficient of
J=1

yi"'y2"® ...y, is the number of patterns assigning the color y, to n; elements’® of X.

Example 5.1 (continued) For the symmetries of the square we know that

Z(G) = (xr*+2x1 255 +3x,242x,)/8.

Thus if Y= {R, B}, then the evaluation of Z(G) at x; = R'+B' yields
((R+BY*+2(R+B)*(R*+ BH+3(R*+B*? +2(R*+B*))/8 =R* + R°B + 2R*B* + RB* + B*

(It is, of course, no coincidence that this polynomial is homogeneous (of degree 1X| and
symmetric. Thus the Pélya Enumeration Theorem tells us that there is one pattern with
4 red vertices (obvious); one pattern with 3 red vertices and 1 blue vertex, represented
by the coloring RRRB; 2 patterns with 2 red vertices and 2 blue vertices, represented by
the colorings BRRB and RBRB, and the remaining possibilities are analyzed by
considerations of symmetry.)

% We speak of a coloring of X; this may be literally true or it may merely be a metaphor for a rule for dividing
the elements of X into disjoint classes

,
5 Of course an =n.
J=1
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Now, given a pattern, there are the various functions fg : X — Y, where fis a fixed
coloring and g € G, in that equivalence class of colorings. These are the homologues,
or, more precisely, the homologues of f. Let us revert to our example.

Example 5.1 (continued) As we have seen, there is one coloring in which all vertices are
colored red. There is only one homologue, namely RRRR.

There is one coloring in which 3 vertices are colored red and one blue. There are 4
homologues, namely BRRR, RBRR, RRBR, RRRB.

There are two colorings in which 2 vertices are colored red and 2 blue. In the first there
are 4 homologues, namely BBRR, RBBR, RRBB, BRRB.

In the second there are 2 homologues, namely BRBR, RBRB.
The analysis is completed by considerations of symmetry.

Let us show how this conception of homologues agrees with our earlier definition. We
are given the group G of permutations of X. Given a coloring f: X — Y, we consider the
subset Gy of G consisting of those g such that fg = f; that is, those movements of X
which preserve the coloring. It is easy to see (just as easy as in our earlier, simpler
situation) that Gy is a subgroup of G. Corresponding to each coset Gog of Gy in G we
have a coloring fg of X and these colorings run through the pattern determined by f. We
have described the set of colorings {fg} as the set of homologues of the coloring f; as
indicated earlier, they are in one-one correspondence with the cosets of G in G.

6. EPILOGUE: POLYA AND OURSELVES — MATHEMATICS,
TEA AND CAKES®

Professor George Pdlya (1887 — 1985) emigrated to the United States in 1940 and
joined the Mathematics Department at Stanford University in 1942. Although the rest of
his professional life was spent at Stanford, he made many trips abroad to accept visiting
appointments for short periods of time. During Pélya's visit to the ETH (Ziirich) in 1966
he shared an office with Peter Hilton (and PH was a guest at his 80™ birthday party, held
in Ziirich, in 1967).

® We present this more personal epilogue to our article at the express request of Dénes Nagy.
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In 1969 Pélya was invited by Gerald Alexanderson (Mathematics Department Chairman
at Santa Clara University — then and now) to give a colloquium talk at SCU. While
there PSlya met Jean Pedersen and was fascinated by (a) the models in her office (some
of which are described in [Rec]) and (b) by her lack of knowledge about their symmetry
and their usefulness in exemplifying some of the mathematics of polyhedral geometry.
After this initial meeting Pedersen visited George and Stella Pélya at their Palo Alto
home once a week until his death in 1985". Pedersen and her husband Kent (who shares
Pélya's birthday — except for the year!) were guests at P6lya's 90™ birthday party, held
at Stanford, in 1977 and the Pdlyas were guests at the Pedersen's home for
Thanksgiving dinner for many successive years.

A typical visit, for Pedersen, included a discussion with Pélya about mathematics. After
an hour or so Stella would appear with tea and cakes, or cookies, and the three of them
would turn their attention to current events and politics. It was during this time that
Pedersen learned about proper rotation groups (knowledge that Pélya acquired from
Felix Klein himself) and the P6lya Enumeration Theorem, about Euler's famous formula
connecting vertices, edges and faces of a polyhedron, and about the formula Descartes
discovered concerning the total angular deficiency of a polyhedron. Pedersen found
herself studying very hard® and looking forward to discussing the new-found aspects of
her own models. Pélya and Pedersen also discussed pedagogy and, in fact, Pedersen was
Pélya's last co-author (see [PP]).

In 1978 Pedersen was asked to try to get George P6lya and Peter Hilton together® in
Seattle at the joint annual meeting of the American Mathematical Society and the
Mathematical Association of America, to discuss "How to and How Not to Teach
Mathematics". The suggestion was that Hilton should discuss "How Not to Teach
Mathematics" and this would be followed by Pé6lya giving "some Rules of Thumb for
Good Teaching". Pélya agreed to participate on the condition that Pedersen would
handle the travel details of getting him to and from Seattle. Hilton also gave only
conditional approval for the plan. Hilton's idea was that it would be much more
interesting, and effective, if he were to demonstrate a thoroughly bad mathematics
lecture (instead of simply talking about it). Hilton also suggested that Pedersen should
be the moderator for the program.

7 After George Pélya's death, Pedersen continued to visit Stella Pélya at least once a week until her death in
1989, just before her 94" birthday.

® Figure 9 is an example, in Pélya's own handwriting of a page he once gave Pedersen saying "see if you can
figure out what it means”. It is connected with what we've been writing about in this article, so we leave the
reader to do Pélya's homework assignment for the week! The only hint Pélya gave was to say that # =
Hexahedron (cube).

® This was how Hilton and Pedersen met and began a collaboration that has resulted in over 70 papers and
four books — to date!
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All conditions were met and the Seattle presentation duly took place. It was a
tremendous success. Hilton's part was hilarious and some said it nearly ruined the rest of
the meeting as participants saw many of Hilton's intentional errors unintentionally
repeated by some of the other speakers. Pélya's contribution was, as you might expect,
superb and had the unmistakable mark of a master teacher. A month or so later Pedersen
was asked by the National Council of Teachers of Mathematics to arrange that the
Hilton-Pélya performance be repeated at their San Diego meeting in the fall of 1978 so
that it could be videotaped. After a few more meetings with tea and cakes, and some
long distance calls, this was done.

At the San Diego meeting Pedersen invited Hilton to visit SCU in October to give a
colloquium talk. He did, and when he saw the models in Pedersen's office they again
sparked long discussions, but this time the discussions centered on the differences
between the ways geometers and topologists classify surfaces.

In 1982, while Peter Hilton was on sabbatical leave as a visiting professor at the ETH
and Pedersen was visiting there for a quarter, they began looking seriously at the paper-
folding. Hilton suggested to Pedersen that she should try to devise a really systematic
way of constructing the polygons from the folded strips (since the 2"+1-gons seemed to
have very special features that didn't generalize). The first result of Hilton's suggestion
was the FAT-algorithm. This innocent-looking algorithm, in fact, opened the flood gates
for both the development of the general folding procedures and the number theory that
grew out of the paper-folding.

After 1978 whenever Hilton visited SCU he went with Pedersen to visit the Pélyas and
together they continued the tradition of mathematics, tea and cakes. In 1981 Hilton and
Pedersen, along with Alexanderson, cooperated with Pélya to bring out the Combined
Edition of Mathematical Discovery (see [P2])'°. During many of the tea parties at
Pélya's home, Pélya talked about his idea of homologues, and on one occasion told us
that he had never written about them and that someday he would like us to write about
them — in fact, he extracted a promise from us that we would do so. Thus we are very
grateful to Dénes Nagy for giving us such a splendid opportunity to fulfill our promise
to our dear friend and teacher George Pélya, and to convey the flavor, and a few of the
details, of our friendly relationship with him.

' Alexanderson updated the references, Hilton wrote a foreword, and Pedersen provided an expanded (and
less esoteric) index.
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Abstract: We consider the problem of colouring the regular triangular tiling {3,n} with
n colours, in such a way that one tile of each colour occurs at each vertex. Such a tiling
will be called precise, and the most interesting precise colourings are those that are
also perfect. We shall find a method of enumerating a large class of perfect precise
colourings, and shall also consider various related problems. Other aspects of the '
subject are discussed in Yaz (1997) and Rigby (1998), which were written after the
present article was first submitted.

1. INTRODUCTION

The following problem appeared in the American Mathematical Monthly, proposed by
Raphael M. Robinson (Robinson 1993).

The hyperbolic plane is tiled with equilateral triangles meeting seven at
each vertex. Can the tiles be colored with seven colors in such a way that
no two tiles of the same color meet even at a vertex? (This problem was
suggested to the proposer by David Gale.)
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The proposer mentioned to me in a letter that he had already solved the problem in 1984,
but that David Gale was interested in the more general problem: can we find a colouring
of the regular tiling {3,n} with equilateral triangles (on the sphere for n = 3, 4, 5, in the
Euclidean plane for n = 6, and in the hyperbolic plane for n 277) using n colours, such
that one triangle of each colour occurs at each vertex?

Figure 1 Figure 2 Figure 3

We shall say that such a colouring is precise. There is no precise colouring of the
tetrahedron {3,3}. The unique precise colouring of the octahedron {3,4} is obvious. The
precise colouring of {3,5} shown in Figure 1 is essentially unique, but it occurs in left-
and right-handed versions. The most obvious precise colouring of {3,6} is shown in
Figure 2; it is fully perfect, which means that every symmetry of the tiling (every
transformation that maps the tiling to itself) permutes the colours instead of jumbling
them up. Another precise colouring is shown in Figure 3; here each horizontal strip
contains just three colours, and the colours in any horizontal strip can be permuted, thus
producing an infinity of highly imperfect precise colourings.

In Section 2 we give a solution to the problem when n = 7 which results in a colouring
that is not only precise but also chirally perfect (a notion that will be explained later). In
Sections 2 and 3 we find a way of viewing this solution that enables us to generalise it
to construct solutions for all values of n. In Section 4 we find all perfect precise
colourings of a standard type, and a unique notation for them. Other related problems
then present themselves, notably the existence of fully perfect precise colourings
(Section 5), which occur only when r is even and n # 8, and the existence of fully
perfect (but not precise) colourings when #n is odd (Section 7). In Sections 8 and 9 we
briefly consider non-standard perfect precise colourings and semiperfect precise
colourings. In Section 10 we show how an infinity of imperfect precise colourings can
be produced; many of these still have a high degree of symmetry. Finally, in Section 11,
we introduce the notion of equivalent colourings, which is useful in the investigation of
the groups of permutations of colours induced in perfect colourings by the direct
symmetry group of the tiling.
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The concepts, constructions and proofs in this article were conceived in a very visual
manner, and are here presented in the same manner. The reader is encouraged to make
photocopies of the blank tilings on the final page (Figure 31), then to get a feel for the
constructions to be described in the article by creating various trees and sewing them
together, and by creating various partial colourings.

2. PERFECT PRECISE COLOURINGS AND TREES

Figure 4 shows the black tiles in a precise colouring of {3,7} (Rigby 1990, Fig. 16;
Rigby 1991, Fig. 7). If we stand on any black tile, it is easy to find two simple rules for
proceeding to the adjacent black tiles; these rules are independent of which tile we are
on, and which edge we are facing. As a consequence (a) any direct symmetry of the
tiling that maps one black tile to another maps the set of black tiles to itself (this is not
true of the opposite symmetries, the ones that “turn the tiling over”) and (b) starting
with any other tile coloured with a second colour, we can use the same rules to colour
all the tiles that are to have that second colour, and proceeding in this way we can
complete the colouring with seven colours. The colouring is said to be chirally perfect,
because every direct symmetry of the tiling permutes the colours, but opposite
symmetries jumble up the colours. This particular colouring has fascinating group-
theoretical properties; see Mackenzie (1995) written in response to Robinson’s problem,
and Rigby (1991, p.60). A partial colouring of black tiles such as the one we started
from in Figure 4 can be called self-consistent.

Figure 4 Figure 5
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If we start with the mirror image of the partial colouring of black tiles in the previous
paragraph, we obtain the mirror image of the chirally perfect colouring: every chirally
perfect colouring occurs in left- and right-handed versions. '

To solve the problem for other values of n, we need to analyse Figure 4 further, with a
view to producing similar self-consistent partial colourings for other tilings. Figure 5
shows the partially coloured tiling of Figure 4 divided up into pieces; alternate pieces
have been stippled in order to show the division more clearly. The stippled pieces are
strips extending to infinity in both directions. The remaining pieces are all directly
congruent; they contain both white and black tiles, and will be called 4-trees because of
their branching shape. The prefix 4 refers to the fact that four tiles of the 4-tree come
together at each vertex of the 4-tree. Note also that no vertex of the complete tiling lies
inside the 4-tree: every tile of the 4-tree has all three of its vertices on the boundary.
Each 4-tree is vertex-transitive: there is a direct symmetry of the 4-tree mapping any
vertex to any other vertex. The 4-trees are partially coloured (some tiles are black), and
this partial colouring of each 4-tree is precise and (chirally) consistent: there is one
black tile at each vertex, and every direct isometry of the tree maps the set of black tiles
to itself. The stippled strips, with three tiles at each vertex, will be called 3-trees, even
though no branching occurs.

Patchwork quilts are often made by first creating portions of the quilt, then sewing the
portions together to make the entire quilt; hence the title of the article.

Our initial technique (to be modified later) for dealing with the general {3,n} tiling will
be to construct k-trees for all values of k (k # 2), and then to sew together partially
coloured k-trees and plain (n—k)-trees alternately (for a particular value of k) to cover
the entire plane; this will produce the black tiles in a precise chirally perfect colouring
of {3,n}. We shall require these k-trees to be vertex-transitive under direct isometries,
and their partial colourings to be precise and chirally consistent (as defined above for 4-
trees); also all vertices of each tile in a k-tree must lie on the boundary of the tree. The
k-trees must all be isomorphic, as must the (n—k)-trees. The next three figures show
examples of this technique. Figure 6 shows partially coloured and plain 4-trees sewn
together to make a self-consistent partial colouring of {3,8}. In Figure 7 the partially
coloured and the plain 4-trees have opposite orientations; this produces a different
partial colouring of {3,8}. In Figure 8, partially coloured 5-trees and plain 3-trees are
sewn together to produce a third partial colouring of {3,8}. Note that precise consistent
partial colourings of 3-trees do not exist.
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3. THE CONSTRUCTION OF STANDARD TREES

A single tile can be regarded as a 1-tree, and a single edge of the tiling as a O-tree; there
are no 2-trees.

Figure 9 shows a 7-tree; all tiles not belonging to the tree have been coloured black. (In
this figure the underlying tiling is {3,9}, so the branches of the tree join up to form
loops; but it is easy to construct the same type of tree for » = 10, so that we then have a
genuine tree without loops.) All the tiles of the tree that have an edge along the
boundary of the tree have been stippled. The remaining tiles (the white tiles) form 3-
trees and 1-trees. Each stippled tile has its base along the boundary, its left side adjacent
to a 3-tree (labelled P in the figure), and its right side adjacent to a 1-tree (labelled Q),
so we shall denote this 7-tree by the symbol (31). Figure 10 shows a different type of 7-
tree; if we break this down in the same way as before, we find that the left side of each
stippled tile is adjacent to a 4-tree, and the right side is adjacent to a O-tree (a single
edge), so the symbol for this 7-tree is (40). But we can break down a 3-tree in the same
way: all its tiles will be stippled, so the symbol for a 3-tree is (00). Similarly the 4-trees
in Figure 10 have the symbol (10). Hence the symbols (31) and (40) for the 7-trees in
Figures 9 and 10 can be further refined to (00)1 and (10)0. There is a third type of 7-tree
with symbol (01)0, and the mirror images of these three 7-trees have symbols 1(00),
0(01) and 0(10), obtained by reversing the previous symbols.

In Rigby (1996) I asserted that any tree, of type X say, can be broken down in the way
just described, using stippled tiles, into trees of types P and Q say, so that every stippled
tile has its base on the boundary of X, its left side adjacent to a tree of type P, and its
right side adjacent to a tree of type Q. This is incorrect, as I discovered by finding a
counterexample whilst drawing various figures to illustrate Section 7 (see Section 8).
But the converse is true: let P denote any type of p-tree and let Q denote any type of g-
tree; then we can put together trees of types P and Q in the manner just described, with
the help of stippled tiles, to form a (p+g+3)-tree denoted by (PQ). As long as p+g+3 <
n—3, the tree (PQ) will be a genuine tree, with no loops, and the construction of (PQ)
will not run into any snags such as the possible overlapping of different branches of

P).

We shall now define standard trees, using an inductive definition: O-trees and 1-trees
are standard trees, and if P and Q are standard trees, then (PQ) is a standard tree. The
symbol for any standard tree is a sequence of Os and 1s, correctly bracketed as in the
previous examples. Any correctly bracketed sequence will represent a type of standard
tree, which will always exist if n is large enough, and because of the uniqueness of the
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breakdown of a standard tree into the form (PQ) different sequences represent different
types of tree: to enumerate all types of standard tree we need only enumerate all
correctly bracketed sequences. In the interests of clarity and legibility the outermost pair
of brackets will frequently be omitted: for instance 0(10) is preferred to (0(10)).

When P and Q are of the same type it is important that each tree used in the construction
of (PQ) should be labelled either P or Q, to prevent any tree from being used as both P
and Q. The importance of this remark will become clearer in Section 8.

We shall discuss non-standard trees in Section 8; non-standard k-trees exist only when &
2 9. We have already enumerated all the 7-trees. As a second example, the standard 9-
trees are (00)(00) which has mirror symmetry, together with ((00)0)0, (0(00))0, (11)1
and their reversals or mirror images.

A reduction formula for s, , the number of standard -trees, is

k=3
Sy =2s,sk_3_, (k=23), sq=5,=1,5,=0.
r=0

When k =2m + 1, the number of standard k-trees with mirror symmetry is s, _; .

How do we obtain partially coloured standard trees? If the partially coloured standard
tree X is broken down into X = (PQ), it is easy to see that the stippled tiles are not
coloured, and hence either the P-trees or the (Q-trees must be partially coloured.
Continuing the breaking down, we eventually find that at some stage 1-trees occurring

in the breakdown must be coloured. We can denote coloured 1-trees by the symbol 1.
Thus the partially coloured 4-trees in Figure 6 and 7 are denoted by (01), and the 5-
trees in Figure 8 by (1 T) . The other possible way of partially colouring the 5-tree (11)
is (11); this is just the mirror image of (11). In contrast, the 9-tree (11)1 has three

essentially different partial colourings, namely (111, (1 1)1 and { I)T.

When partially coloured p-trees of type P and plain g-trees of type Q are sewn together
alternately to cover the entire tiling and to form a self-consistent partial colouring of

{3,n}, where n=p+gq, we can denote this partial colouring by P.Q; then the
colourings of Figures 6, 7 and 8 are (01).(01), (01).(10) and (1 1).(00).
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Note the distinction between “sewing together trees of types P and Q alternately” to
cover the entire tiling, giving a patchwork or a partial colouring denoted by P.Q, and
“putting together trees of types P and @ with the aid of stippled tiles” to form a tree
denoted by (PQ). Note also that P.Q = Q.P, but (PQ) and (QP) are in general distinct.

4. THE ENUMERATION OF ALL STANDARD PERFECT
PRECISE COLOURINGS

When n < 6, the only way of obtaining self-consistent partial colourings of {3,n} is to
use trees whose branches join up to form loops, as indicated below.

n = 4. There is only one self-consistent partial colouring. We can think of the six white

tiles as forming a 3-tree (00), so the colouring is (00).1. Alternatively, we can regard it

as (OT).O or (T 0).0, where all eight tiles form a 4-tree (OT) or (_f 0) whose bounding

edges are joined up to each other.

n = 5. The four black tiles of the icosahedron shown in Figure 1 give a self-consistent
partial colouring. The remaining tiles form a 4-tree (01), so the partial colouring is

(01).1; but it can also be regarded as (10).1 or (11).0.

n = 6. The partial colouring given by the black tiles in Figure 2 is (11).1,
(I1D.10r (11).1.

These examples show that the same partial colouring can be arrived at in different ways
by sewing trees together; but they also provide two clues as to how we can obtain a
unigue symbol for each standard partial colouring (a concept to be defined below), and
therefore for each standard perfect precise colouring. First, we must make use of trees
with loops; secondly, each self-consistent partial colouring is uniquely determined by
the (n—1)-tree (with loops) formed by the uncoloured tiles. If this (n—1)-tree is standard,
we shall say that the partial colouring and the associated precise colouring are standard.
Thus there is a one-one correspondence between standard partial colourings of {3,n}
and standard (n—1)-trees, as long as we can be sure that every possible standard (n-1)-
tree (with loops) that can be constructed according to the method described above
actually exists within the tiling {3,n}, i.e. as long as the branches of every standard
(n—1)-tree join up correctly to form loops and do not overlap in an irregular way. Let us
see why no irregular overlapping occurs.
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Let P, Q and R denote types of p-, g- and r-trees respectively, and consider the
patchwork formed when (p+gq+3)-trees of type (PQ) and trees of type R are sewn
together alternately to form the partial colouring (PQ).R that completely covers the
tiling {3,n}, where n = p+qg+r+3. This patchwork contains stippled tiles, each stippled
tile surrounded by trees of types P, @ and R (R along its base, P on its left, Q on its
right), and at each vertex trees of types P, Q and R alternate with stippled tiles. Figure 9
can be used to illustrate the general situation if the black regions are labelled R, but it is
not a “genuine” example, because the regions labelled R are not trees: each is a 9-gon
with a vertex of the tiling at its centre. (The Q-tiles in Figure 9 provide a partial
colouring leading to a perfect colouring of {3,9} in ten colours. But that is another
story; it leads to a way of obtaining perfect colourings of {3,n} in n+1 colours except
when n =4, 5 or 8.) Thus we see that the patchwork initially denoted by (PQ). R can
also be denoted by R.(PQ), (QR).P, P.(QR), (RP).Q or Q.(RP). (This is reminiscent of
the scalar triple product (axb).c = c.(axb) = (bXc).a =... in vector algebra.).

We are concerned here with whether the (p+g+3)-tree (PQ) (with loops) exists when
n = p+q+4, or equivalently whether the patchwork (PQ).1 exists when n =p+g+4. Now
either p >3 or q = 3 unless n < 6, and we know all about the cases n < 6. Hence without
loss of generality p > 3, and (PQ).1 can be written as P.(Q1) which certainly exists
since P and (Q1) are genuine types of tree without loops which can be sewn together
alternately to cover the tiling {3,n}.

in the
notation of Section 3. The number of colourings increases rapidly with n; for instance,
when n = 20 there are 6 standard fully perfect precise colourings (see Section 5 below)

and 1548 standard chirally perfect precise colourings occurring in 774 left- and right-
handed pairs.

The number of standard perfect precise colourings of {3,n} is therefore s, ;,

5. FULLY PERFECT PRECISE COLOURINGS

The perfect precise colourings of {3,4} and (3,6} are fully perfect rather than chirally
perfect: every symmetry (direct or opposite) of the tiling permutes the colours. But, as
we shall see, there is no fully perfect precise colouring of {3,8}. We shall show that a
fully perfect precise colouring of {3,n} exists if and only if n is even and n # 8.
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A fully perfect precise colouring of {3,n} occurs if and only if the underlying self-
consistent partial colouring has mirror symmetry. Suppose that in Figure 11 we try to
construct a fully perfect precise colouring when »n is odd. Each of the n colours occurs
once at the central vertex, and the rotation o. through an angle 2a/n about the central
vertex permutes the n colours cyclically. Since o induces this same permutation of
colours on the outer ring of tiles A, B, C, ..., exactly one tile in this ring must be black.
But reflection in the dotted line in the figure maps black to black; hence we obtain two
black tiles in the ring A, B, C, ... unless the black tile occurs at A. This is impossible,
and hence no fully perfect precise colouring occurs when # is odd. The same conclusion
can be reached, for standard colourings only, by considering the (0,1)-symbol for the
associated (n—1)-tree: for a fully perfect colouring this tree must have mirror symmetry,
and hence its (0,1)-symbol must be symmetric, which cannot occur when (n—1) is even.

Figure 11 Figure 12

The corresponding situation when # is even is shown in Figure 12. We see by a similar
argument that the unique black tile in the outer ring of tiles must occur in the position
shown. When n = 8, this figure now gives us a rule for proceeding from one black tile to
the neighbouring ones, and it can easily be checked that this rule leads to a perfect
colouring in 10 colours rather than 8 (Rigby 1991, Fig.18; Rigby 1994, Fig.23). Hence
no fully perfect precise colouring exists when n = 8.

Let P be any p-tree (not necessarily standard), and let P’ be its mirror image. Then
(PP") is a (2p+3)-tree with mirror symmetry, and the associated precise colouring for n
= 2p + 4 will be fully perfect. Since p-trees exist whenever p 2 0 and p # 2, fully perfect
precise colourings exist whenever » is even and n # 8.
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6. A SPECIAL TYPE OF COLOURING

The black tiles in Figure 13 determine the same colouring as Figure 6, and the stippled
tiles are the tiles of a second colour in this same colouring. The two colours of tile are
directly opposite each other at every vertex; they form branched chains of alternate
colours. Does such a type of colouring exist for other even values of n? Certainly it does
not when n =4 or 6.

One of the patchwork symbols for the partial colouring of black tiles in Figure 13 is
(OT).(OI), We can extend our notation and use instead the symbol (0A).(0B), where A

denotes the black tiles and B denotes the stippled tiles; the figure is obtained by the
sewing together alternately of 4-trees partially coloured with A-tiles, and directly
congruent 4-trees partially coloured with B-tiles. Since partially coloured k-trees exist
except when k£ = 2, 3 and 6, we can use the same method to obtain precise colourings of
{3,n} of this special type, when n = 2k, by piecing together alternately k-trees partially
coloured with A-tiles and with B-tiles, except when n =4, 6 and 12.

Figure 13 Figure 14

7. FULLY PERFECT COLOURINGS WHEN = IS ODD

The main subject of this article is precise colourings, but it is now natural to ask the
question: are there any fully perfect colourings of {3,n} (not precise of course) when n
is odd? I had not come across any such before starting this investigation, apart from the
obvious colourings of the icosahedron {3,5} in ten colours, with opposite faces having
the same colour. We can ignore colourings using one colour only, and colourings of
polyhedra in which all faces have different colours. In the hyperbolic case, only a finite
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number of colours are to be used. We shall show that such colourings exist, with
twenty-eight colours when n = 7, and 2n colours for all other odd values of n except
n=3. ’

We need to construct a self-consistent partial colouring with the extra requirement of
complete mirror symmetry: every symmetry of the tiling that reflects any black tile to
itself must reflect the complete set of black tiles to itself.

Let us first look again at fully perfect precise colourings when » is even, taking n = 10

as a convenient example. The partial colouring (00)(00). 1 with n = 10 (shown by the
black tiles in Figure 14) leads to a fully perfect colouring. We shall refer to a tile with
its three adjacent tiles as a node. Figure 14 can be regarded as black-and-stippled nodes
and 3-trees sewn together. The fully perfect partial colouring when n = 6 can be
regarded in the same manner as nodes and 1-trees sewn together. In general, p-trees and
their mirror images can be sewn together with nodes to produce a partial colouring
leading to a fully perfect colouring of {3, 2p + 4}, except when p = 2 (see the end of
Section 5).

In Figure 14, the nodes are joined together to form branched chains. An attempt to
produce something similar when n = 7 results in Figure 15: we now have branched
chains consisting of nodes connected by links (single edges). The chains are separated
by strips of white tiles of a type that we shall denote by 5(2,3). These strips are not trees.
They have vertices of the tiling in their interiors; at each boundary vertex of the strip
there are 2 or 3 tiles of the strip, and 2- and 3-vertices occur alternately. The strips are
directly transitive on 2-vertices and on 3-vertices: there is a direct symmetry of the strip
mapping any 2- or 3-vertex to any other. (Each s(2,3) also has mirror symmetries, but
this is not relevant here.)

Figure 15 Figure 16
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We can indicate an orientation for the boundary of each s(2,3) by means of arrows. If,
wherever we stand on the boundary facing in the direction of the arrow, the interior is
on our left, the orientation is positive, if “left” is replaced by “right”, the orientation is
negative; we shall require that the two different disconnected parts of the boundary of
an 5(2,3) have the same orientation. We can also indicate an orientation for the chains
(the same for each chain) as shown in Figure 15. When we sew chains and s(2,3)s
together, we require that arrows on chains and adjacent strips must point in the same
direction; this ensures that the partial colouring of Figure 15 (and of Figure 16 later) can
be completed in a unique manner. The resulting partial colouring is self-consistent and
has complete mirror symmetry. Note that adjacent strips have positive and negative
orientation alternately. It is easy to check that one twenty-eighth of the tiles in Figure 15
are coloured black, so the complete colouring requires twenty-eight colours.

The cormresponding partial colouring when n = 9 is shown in Figure 16. The strips are
now replaced by what we may call (3,4)-trees, because no vertex of the tiling occurs in
their interiors (They are called alternating trees in Yaz (1997, Chapter IV).) These
strips will be denoted by #3,4) or its mirror image #(3,4)". At each vertex of #(3,4) there
are either 3 or 4 tiles of #(3,4), and #(3,4) is directly transitive on 3-vertices and on 4-
vertices; vertices with 3 or 4 tiles occur alternately along the boundary. A way of
describing the construction of #(3,4) will be given later. Each #(3,4) in Figure 16 has
positive orientation; each mirror-image t(3,4)’ has negative orientation. Since #(3,4) does
not have mirror symmetry, if we had used instead copies of t(3,4)’ with positive
orientation and copies of #(3,4) with negative orientation, whilst retaining the existing
orientation for the chains, we should have obtained a partial colouring different from
Figure 16.

All we need to do now is to construct, in an inductive manner, #(k,k+1)s for each k (k #
2), directly transitive on k-vertices and on (k+1)-vertices; #(1,2) is just a pair of adjacent
tiles, and #(2,3) does not exist which is why we had to use 5(2,3) in Figure 15. These #(k,
k+1)s are more complicated than the trees in Sections 3 and 4; we shall not attempt to
construct all such trees, and only a brief description of the construction will be given.

Basically, we take an existing #(k, k+1) of type P say, and an ordinary
g-tree of type 0, and put together trees of types P and Q with the aid of stippled tiles as
in Section 3, to produce a (k+g+3, k+g+4)-tree of type (PQ), or alternatively of type
(QP). We must perform the construction carefully so that (PQ) has (k+g+3)-vertices
and (k+g+4)-vertices alternately; if this is done it can be verified that (PQ) is transitive
as required.
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Figure 17 illustrates a #(4,5) with P = 0 (a O-tree) and Q = #(1,2). Figure 18 shows a
1(5,6) with P = #(1,2) and Q =1.

Figure 19 Figure 20

The tree in Figure 17 is made up of white #(1,2)s and stippled diamonds; every edge of
each #(1,2) is joined to a diamond, but only two edges of each diamond are joined to a
#(1,2). In Figure 19 the #(1,2)s and diamonds are joined differently to obtain a different
#(4,5). We can always join t(k, k+1)s and diamonds in two different ways to produce
two #(k+3, k+4)s. The tree in Figure 18 is made up by joining white #(1,2)s and white-
and-stippled nodes; if we try to “reverse” half of the nodes (by joining their other three
edges to the #(1,2)s) as we did with the diamonds in Figure 18, we obtain a #(4,7). This
by itself is of no direct use in the present context, but if we join diamonds or nodes
correctly to #(4,7) we can get a new type of #8,9) or #9,10). The possibilities seem
endless.
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We can now join #(k, k+1)s with positive orientation, and their mirror images with
negative orientation, to branched chains as in Figure 16, to create a partial colouring of
{3, 2k+3} with mirror symmetry, except when k = 2. Since a black tile occurs at half the
vertices of this partial colouring, it leads to a fully perfect colouring in 2(2k+3) colours.

The colouring of the icosahedron {3,5} in ten colours can be obtained in this way: the
chain then consists of two nodes joined by six links, and the remaining tiles form six
t(1,2)s.

Finally, when n = 7 (compare Figure 15) we can reverse the directions of the arrows on
one of the two sides of the boundary of the strip 5(2,3), and the strip will still be
transitive on 2-and 3-vertices, because there are glide reflections interchanging the two
sides of the boundary. We can then sew together such newly oriented s(1,2)s with
branched chains to create a new self-consistent partial colouring with mirror symmetry,
different from Figure 15. Is there a similar procedure sometimes with #(k, k+1)s?

8. NON-STANDARD PERFECT PRECISE COLOURINGS

In Figure 14 arrows have been inserted so that each 3-tree has either positive or negative
orientation. But suppose we take 3-trees each of which is assigned one positive edge
and one negative edge, and sew them to chains of nodes oriented as before, so that the
directions of the arrows match. The resuit is shown in Figure 20; this is a partial
colouring with mirror symmetry which yields a fully perfect precise colouring of
{3,10}, but it is not derived from a standard 9-tree.

Before we analyse exactly how the 9-tree of non-black tiles in Figure 20 differs from a
standard tree, let us make the analysis clearer by constructing another non-standard tree.
First I constructed, in an ad hoc manner, a pseudo-tree in which some sections of the
boundary have p tiles at each vertex, and some have q tiles at each vertex. The simplest
example with p # g seems to occur with p = 5; it is shown as a pseudo-tree with loops in
Figure 21 (my original construction) and without loops in Figure 22. This pseudo-tree is
directly transitive on 4-vetices and on 5-vertices, and any pseudo-tree of this type will
be called a pseudo-tree of type ps(4,5). Let us now put together copies’of ps(4,5) with
the aid of stippled tiles to form a tree of type X, in such a way that each stippled tile has
its base along the boundary of X, its left side adjacent to a 4-boundary of a ps(4,5), and
its right side adjacent to a 5-boundary of a ps(4,5); and every edge of every ps(4,5) must
be adjacent to a stippled tile. The result can be seen to be a 12-tree X, satisfying the
conditions for a tree given in Section 2.
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Figure 21 Figure 22 Figure 23

We can describe this process differently. Assign a positive orientation to each 4-
boundary of each ps(4,5) and a negative orientation to each 5-boundary, as shown in
Figure 22, and assign orientations to the left- and right-hand edges of each stippled tile
as shown in Figure 23. Then put together ps(4,5)s and stippled tiles so that the
orientations match. This is just what we did in Figure 20, where the 3-trees must now
be regarded as (3,3) pseudo-trees. In contrast, when we put together trees of types P and
Q with stippled tiles in the standard way to produce the tree (PQ), we can regard every
section of the boundary of each P as having positive orientation, with negative
orientation for the boundary of each Q. :

Various questions remain. Do pseudo-trees provide the only method of constructing
non-standard trees? How do we construct pseudo-trees? Is there an algorithm for
constructing all pseudo-trees? Without doing further research, I can give a sketch of an
answer to the second question only.

If we break down the ps(4,5) in the usual way with the aid of stippled tiles, as shown in
Figure 22, we see that it is obtained by putting together O-trees, #(1,2)s and stippled tiles
in a suitable way (but compare Figure 17 where the same elements are put together
differently). I conjecture that we can put together copies of t(p,q), #(r,s) and stippled
tiles to produce ps(p+r+3, g+s+3); but then we need a method of constructing all types
of #(p,q). See Yaz (1997, Chapter IV).
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9. SEMIPERFECT PRECISE COLOURINGS

A colouring in which half the direct symmetries and half the opposite symmetries of the
tiling permute the colours, but the remaining symmetries jumble the colours, is called a
semiperfect colouring. When n is even, we can label the tiles of {3,n} positive and
negative alternately, like a generalised chessboard. If we can find a partial colouring
with black tiles such that there is a set of rules for proceeding from any positive black
tile to the neighbouring black tiles, and the mirror images of those rules lead from any
negative black tile to the neighbouring black tiles, then this partial colouring leads to a
semiperfect colouring. There is a semiperfect colouring of {3,8} in seven colours; two
colours of this colouring are shown in Figure 24, reproduced from Rigby (1990, Figure
18), but let us now look for semiperfect precise colourings. All trees in this section are
standard trees. ‘

Figure 24 Figure 25

Consider the patchwork (11).(00) (Figure 8), and label the tiles positive and negative

alternately, as just described. The two bounding edges of a (00) can be described as
positive and negative, since all the tiles adjacent to one boundary are positive, and all

those adjacent to the other are negative. But the bounding edges of a (1 41_) are either all
positive or all negative, so a (11) can be called positive or negative. The black tiles of
a positive (11) are all negative, and vice versa. Now, change each positive (1), in
the patchwork (11).(00), to(11); the resulting partial colouring satisfies our

requirements. This partial colouring is shown in Figure 25; note that it does not have
mirror symmetry like the partial colouring of black tiles in Figure 24, but there are
opposite symmetries (glide reflections with axis running down the middle of one of the
3-trees) interchanging positive and negative tiles and mapping the set of black tiles to
itself.
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When n is even, suppose we can find (a) a k-tree #(k) where k is odd, such that there
exists a glide reflection mapping #(k) to itself and interchanging positive and negative
edges, and (b) a partially coloured (n—k)-tree T(n—k) all of whose edges have the same
sign. Suppose that T(n-k) has positive edges, and let T(n—%)' be a mirror image of
T(n—k) with negative edges. We can cover the whole plane by piecing together directly
congruent copies of #(k), T(n—%) and T(n—%)', always joining a positive edge to a
negative edge, and negative to positive. This will produce the black tiles of a
semiperfect precise colouring.

To show that #(k) and T(n—k) exist with the required properties, we need to consider the
symmetries of trees. Consider a particular example. Figure 26 is a redrawing of Figure
10, and shows a 7-tree (10)0. The white tiles form 4-trees, corresponding to the (10)
component of the symbol (10)0. In the construction of these 4-trees (as described in
Section 3), the unlabelled white tiles correspond to the symbol 1, the dotted edges
correspond to the symbol 0, and the tiles labelled s are stippled. The heavily drawn
edges in the figure correspond to the second O in the symbol (10)0. It should be clear
from the method of construction of standard trees that, in any standard tree, the centre
of any tile corresponding to a 1 in the (0,1)-symbol is a centre of threefold rotational
symmetry of the tree, and the mid-point of any edge corresponding to a 0 in the (0,1)-
symbol is a centre of twofold rotational symmetry (or “centre of symmetry” for short) of
the tree. These remarks still hold if the tree is partially coloured, indicated in the (0,1)-

symbol by replacing one of the 1s by 1. We note also that in a symmetrical standard tree

(one whose (0,1)-symbol is symmetrical), the perpendicular bisector of every bounding
edge is a line of symmetry.

Figure 26
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Since a half-turn about the centre of an edge interchanges positive and negative tiles, a
partially coloured T(n—k) as described above will have all its black tiles of the same sign
only if there are no Os in its tree-symbol; we can prove by induction that conversely, if
there are no Os in its tree-symbol, all the black tiles of T(rn—k) have the same sign, and so
do all its edges. A T(n—k) with these properties exists if and only if #n — & is of the form
4m + 1. But T(1) is of no use in the present context because it is symmetrical when
partially coloured, and therefore when it is combined with a symmetrical #(k) (as
described in the next paragraph) it will yield a fully perfect colouring.

Let #(k), where k is odd, be a symmetrical tree with a O in its symbol. Let o denote the
reflection in m, the perpendicular bisector of a bounding edge of the tree, one of its lines
of symmetry, and let 3 denote the half-turn about the point A, one of its centres of
symmetry. Since A is the midpoint of an internal edge, A does not lie on m; also o
preserves signs and [3 interchanges signs. Hence o3 is a glide reflection that maps t(k) to
itself and interchanges positive and negative edges. A #(k) with these properties exists
except whenk =1,5,7 or 13.

We conclude that semiperfect colourings can be constructed by this method except
whenn=4, 6 or 10.

10. IMPERFECT PRECISE COLOURINGS

In our construction of chirally perfect precise colourings of {3,n}, we have used (n-1)-
trees to determine the tiles of a single colour; it should be noted that the trees associated
with tiles of different colours are quite distinct from each other, although of the same

type.

We shall now use trees in a somewhat different way. Each 4-tree in Figure 4 can be
precisely coloured in four colours as in Figure 27. “Precise” here means that one tile of
each colour occurs at each vertex of the tree. A different but equally logical precise
colouring is shown in Figure 28, and “random” precise colourings are also possible. The
3-trees in Figure 4 can be precisely coloured in three other colours. Since the three or
four colours in each tree can be permuted, we can obtain in this way an infinity of
imperfect precise colourings of the entire tiling. Moreover, when joining the trees
together, we can at any time use a tree of type (10) instead of (01), producing further
irregularity or imperfection.
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I conjecture that it is always possible to create a precise colouring of any k-tree in k
colours, except possibly a k-tree with loops embedded in the tiling {3, k + 2}, and that
this colouring can be carried out in a reasonably symmetrical and perhaps a perfect way
(so that every direct symmetry of the tree permutes the colours).

Figure 27 Figure 28

For larger values of n, more possibilities occur. For instance, there are three distinct
types of 7-tree, each with its mirror image; when n = 11 we can join different types of 7-
tree (precisely coloured in seven colours) and 4-trees (precisely coloured in four further
colours) to produce an infinity of precise colourings of {3,11}.

Figure 29
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I found the pleasing pattern of Figure 29 when I was just experimenting with methods
of making patchwork; flowers with a black centre and three petals alternate with leaves
formed by two tiles. (In the notation of Section 8, the non-black tiles forin a pseudo-tree
with loops: ps(6,6).) This can be used as the basis of a subtle precise colouring: the
flowers are of two types, according to the cyclic order of the three colours in the petals,
and the two types of flower are surrounded in quite different ways by the x, y and z
colours of the leaves.

11. EQUIVALENT COLOURINGS

We shall introduce the idea of equivalent precise colourings of {3,n} by considering just
one example — the simplest non-trivial example. In Figure 30, where n = 9, the tiles
labelled A form a self-consistent partial colouring (leading to a chirally perfect precise
colouring); the remaining tiles form an 8-tree whose symbol may be written (CB)0
rather than (11)0, using the notation introduced in Section 6. The complete patchwork -
of Figure 30 can be denoted by any of the symbols (CB)0.A = CB.0A = C.B(0A) =
= B(0A).C = B.(0A)C. This notation shows that the A-tiles lead to the precise colouring
(11)0, the B-tiles lead to (01)1, and the C—tiles to 1(01). These are three distinct non-
isomorphic precise colourings. It is important to emphasize that the patchwork is self-
consistent: any direct symmetry of the tiling that maps one A-tile to another A-tile maps
all A-tiles to A-tiles, all B-tiles to B-tiles, and all C-tiles to C-tiles.

Figure 30



286 J. F. IGBY

The direct symmetries of the tiling {3,n} induce a group of permutations of the colours
in any perfect colouring: the (direct) colour permutation group of the colouring. We
shall show that any direct symmetry of the tiling induces the same colour permutation in
the three colourings described above, so that the three non-isomorphic colourings have
ismorphic colour permutation groups; for this reason we call them equivalent
colourings. But note that the statement in italics makes sense only if the three tilings are
suitably coloured using the same nine colours (as described in the next paragraph), and
only if the three colourings are suitably overlaid so that they become three colourings of
the same tiling (rather than of isomorphic tilings). )

Let us then consider in more detail how we can produce the three colourings. Consider
three copies of the tiling {3,9} overlaid on each other; label the copies A, B and C.
Think of Figure 30 as a template that can be placed over the copies of the tiling in any
position (as long as edges are placed over edges). (This is of course a hyperbolic
template: Figure 30 regarded as a Euclidean figure can only be placed in nine ways over
the Euclidean representation of the tiling.) Now perform the following sequence of
operations. (1) Place the template over the copies of the tiling. Colour the A-tiles black
in Copy A, colour the B-tiles black in Copy B, and colour the C-tiles black in Copy C.
(2) Place the template in a new position over the copies of the tiling, in such a way that
a non-black tile in Copy A is now marked A. Because of the self-consistency of the
template, no black tile in Copy A is now marked A, no black tile in Copy B is marked B,
and no black tile in Copy C is marked C. Colour the A-tiles red in Copy A, colour the B-
tiles red in Copy B, and colour the C-tiles red in Copy C. (3) Place the template in a new
position, in such a way that a non-black and non-red tile in Copy A is now marked A,
and proceed as before: use a third colour to colour the A-tiles, B-tiles and C-tiles in
Copies A, B and C respectively. Continuing in this way, we eventually arrive at the three
perfect precise colourings in nine colours.

Nine positions of the template are used to produce the colourings (we can refer to “the
black template”, “the red template”, etc.), and any direct symmetry of the tiling simply
permutes the nine positions of the template, and hence produces the same permutation
of the nine colours in all three colourings; but this statement needs more explanation
and discussion to make it convincing, so we shall use a different approach that leads to

the same conciusion and that exhibits an extra property of the colourings.

Denote the angle 277 /9 by 6. Rotation through 48 (clockwise) about any vertex of the
template maps the A-tile at that vertex to the B-tile. Let P be any vertex of the three
copies of the tiling. Rotation through 46 about P maps the black tile at P in Copy A to
the black tile at 2 in Copy B, and the same is true for any other colour. Hence, rotation
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through 46 about P maps the complete ring of colours around P in Copy A to the ring of
colours around P in Copy B. Similarly rotation through 20 about P maps the ring of
colours around P in Copy B to the ring of colours around P in Copy C. We emphasize
that this is true for every vertex P.

Let o denote the rotation through 8 about P; then « induces the same permutation of
colours in all three colourings, namely the 9-cycle determined by the clockwise order of
the colours around P. Let f§ denote the rotation through 6 about an adjacent vertex Q;
then B induces the same permutation of colours in all three colourings. But the direct
symmetry group of the tiling is generated by & and 3 (Yaz, 1997, 2.1); hence any direct
symmetry of the tiling induces the same colour permutation in all three colourings, and
therefore the direct symmetry group of the tiling induces the same colour permutation
group in all three colourings.

The “‘extra property” exhibited by this approach is that the colours around P in Copy B
can be obtained from the colours around P in Copy A by means of a rotation whose
angle is independent of P (namely 480 in this instance).

The reader can easily investigate further examples of equivalent colourings. When
n = 5, the two perfect precise colourings of the icosahedron are equivalent as well as
being reflections of each other. When n = 8 and 10, some of the colourings are
equivalent to their reflections. When n = 11, various non-isomorphic colourings occur
in equivalent pairs. The next interesting cases, with triples of equivalent non-isomorphic
colourings, occur when n = 12; this is because the (0,1)-symbols of all 11-trees contain
two 1s.

12. FURTHER ASPECTS OF THE SUBJECT

Robinson’s quite different method for finding precise colourings when n is even is
described in Rigby (1998). A fuller discussion of non-standard trees, an algorithm for
obtaining generators for the colour permutation group associated with the colouring
determined by a specified tree, and an investigation of perfect colourings of {3.n} using
n + 1 colours, can be found in Yaz (1997). I am currently investigating the connection
between perfect precise face colourings and perfect precise edge colourings.

I am grateful to Douglas Dunham for providing me with computer drawings of {3,10}.
All the remaining drawing and painting was done by hand.
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Visualization of geometric forms has been realized for centuries using two-dimensional
representations on paper. This type of representation works well for two-dimensional
shapes but is limited for three-dimensional forms. A two-dimensional representation is
often only one of the many views necessary for the complete visual understanding of a
three-dimensional form. Orthographic projections such as plan and elevation views are
not sufficient to visualize complex shapes. Physical models provide a better
understanding of three-dimensional forms (Cundy and Rollet, 1961) but they are
cumbersome to construct and limited by size; sometimes a form should be seen from its
inside for a complete comprehension of its spatial characteristics. Furthermore, the
materials used to construct the model often distract from the properties of the “ideal”
shape as geometrically defined.

Computer graphics has revolutionized the visualization process and the realization of
models. As with physical models, electronic models can be visualized from any
viewpoint at any position and distance, but are not limited by size and can be seen from
inside as well outside.

The images shown in the each of the illustrations represent top, frontal and perspective
views of computer generated models of regular polyhedra as seen from the outside;
some of the models are also represented as viewed from the inside.
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COMPUTER-AIDED DESIGN AND VISUALIZATION

Beyond its potential for visualization, the computer offers the possibility of generating
electronic models using computer-aided design (CAD) software. This type of computer
graphics application offers a quite specific data structure, characterized by the use of
instances (Bertol, 1994). An instance can comprise any of the geometric entities, which
can be generated in CAD with associated parameters such as position, scale, and
rotational angle. These parameters are related to the other main engine for the
development of a computer model, that represented by the geometric transformations
(Bertol, 1994). In a CAD model each element/part subjected to repetition can be
purposefully defined as instance. A model made of instances focuses on the simulated
shape as a whole comprised of parts.

The content of an instance can be redefined with different geometric elements while the
parameters associated with it are conserved. The change of content in one instance
propagates to all the other instances bearing the same name. The redefinition of
instances in a model can generate completely different geometric characteristics even if
the spatial and symmetry relations between the elements defined as instances are
conserved. A model made of instances can therefore “evolve” in completely different
forms which have in common the symmetry of the initial configuration: e.g. a row of
triangles with a side of 5" at a distance of 9" can be transformed into a row of spheres
with a radius of 3". The use of instancing is particularly effective in the case of forms
strongly characterized by symmetry, such as the regular polyhedra.

REGULAR POLYHEDRA AND SYMMETRY

The number of possible regular convex (two-dimensional) polygons - triangle, square,
pentagon, hexagon, etc. - is infinite. Conversely the number of the analogous entities -
regular polyhedra - in three-dimensional space is limited to five: tetrahedron,
octahedron, icosahedron, cube and dodecahedron. The regular polyhedra are also called
the Platonic solids, after the philosopher Plato (IV century B.C.), who thoroughly
discussed the characteristics of these solids in his dialogue Timaeus (Plato, 1965). Many
artists and mathematicians through the centuries have been fascinated with the regular
polyhedra.

In each regular polyhedron all the vertices, edges and faces are equivalent, and the faces
are regular polygons (Hilbert and Cohn-Vossen, 1952). The name of the polyhedron
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expresses the number of faces. The definition of each solid is therefore given by the
type and the number of faces, edges, and vertices as well as their position and relations
in three-dimensional space.

POLYHEDRON VERTICES EDGES FACES EDGES PER | EDGES PER
FACE VERTEX

TETRAHEDRON 4 6 4 3 3

CUBE 8 12 6 4 3

OCTAHEDRON 6 12 8 3 4

DODECAHEDRON 20 30 12 5 3

ICOSAHEDRON 12 30 20 3 5

In the present discussion the emphasis is on the symmetric structure specific to each
polyhedron. The regular polyhedra represent the possible regular symmetric
configurations in three-dimensional space (Weyl, 1952); rotational symmetry about the
center of the polyhedron rules the position of each vertex, edge and face.

The polyhedron significance goes beyond its geometric shape since it becomes a
definition of compositional rules. The models shown in the illustrations follow this
approach: different types of shapes replace the geometric elements defining the
polyhedron, which becomes a schematic diagram embodying its potential evolutions.

POLYHEDRA AND INSTANCES

Each of the geometric elements inherent to the architecture of a regular polyhedron -
vertices, edges and faces - can be defined as instance, characterized by a position and a
rotation angle relative to the center of the polyhedron. The creation of a CAD database
defining a polyhedron exemplifies a situation where the model definition based on the
symmetry relations between elements is pregnant of many different possible
transformations. The evolutions - as defined in previous sections - for each polyhedron
depict possible formal transformations involving the change of geometric characteristics
while keeping the spatial relations between faces, edges and vertices.

In the evolutions of the models of polyhedra shown in the illustrations, the geometric
entities which make the original polyhedra are completely transformed. The evolved
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model, in some cases, does not resemble a polyhedron any longer. While the contents of
the instances are changed, the symmetry relations are kept. The numbers of faces, edges
and vertices defining each polyhedron are conserved as well.

The definition of the elements which make a polyhedron in terms of instances bridges
the realm of ideal geometry, made of mere geometric entities, such as points, lines and
planes, to the realm of constructable realizations, made of physical materials which are
subject to many constraints. For example, the polygons defining the faces of the
polyhedra can be assigned a thickness, or similarly, the edges can evolve from a line to
a cylinder or prism, changing their geometry characteristics of two-dimensional and uni-
dimensional entity to three-dimensional objects assimilable to physical materials.

EVOLUTIONS OF THE REGULAR POLYHEDRA

One of the simplest evolutions is the transformation of each polyhedron into its stellated
match (Kepler, 1619). In this transformation the faces defining the polyhedron are
replaced by pyramids whose base is identical with the polygon which define each face
of the polyhedron.

The “open” polyhedra, already illustrated by Leonardo da Vinci (Pacioli, 1509), can
easily be evolved from the basic polyhedra by replacing the edges with prismatic
elements. In this type of polyhedra the definition of enclosure, present in the regular
polyhedra, no longer exists.
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Further evolutions are possible from the basic models of the regular polyhedra by
replacing vertices, edges and faces, with a variety of forms resembling natural and man-
made elements. A well known example is Haeckel's Kunstformen der Natur, where
many illustrations of natural forms, such as protozoa, sponges, starfishes and several
plants, clearly resemble the regular polyhedra (Haeckel, 1974). In this type of
“evolution”, vertices, edges and faces completely loose their geometric meaning,
assuming complex formal characteristics.

Beyond the stellated and open polyhedra evolutions, the models shown in the
illustrations include two additional types of evolutions. In some of the polyhedra
evolutions, such as those shown for the tetrahedron, cube and octahedron, the redefined
geometric elements are assimilated to physical elements: vertices are replaced by joints
and edges by bars. This type of model can bring insights about their physical
construction and can be purposefully used to represent and investigate space frame
structure.

In the other models derived by the cube and octahedron, vertices are replaced by
revolution surfaces, generated by the rotation of a circular arc around the axis defined
by the original vertex and the center of the polyhedron. The re-defined faces connecting
the revolution surfaces create interesting enclosures: the relationship between inside and
outside is completely transformed from that of the original polyhedron.

Other shapes represent ideal, gravityless structures, such as the model evolved from the
dodecahedron, where vertices have been replaced by space frame towers. Both of the
additional models derived by the icosahedron resemble spaceship architectures: in one
model trussed arches replaces the edges while in the other the original vertices evolve in
helices.

The digital models shown in the illustrations represent only some of the unlimited
number of models which can be derived from the regular polyhedra. The potential
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presented by electronic models can offer insights in the investigation of symmetric
configuration, offering a contemporary interpretation of the regular polyhedra, which
have continued fascinating scientist and artist for thousands of years.
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Abstract: Tetralectics is a new type of logic with a novel way of validation and a
demand for a three dimensional geometrical representation, a metatheory for scientific
theories, a logic of scientific theory-building. Its intellectual background includes the
causal theory of Aristotelian philosophy, Hegelian dialectics and the postmodernist
preference for plurality. The rich heritage of them allows tetralectics to become a
method for treatment of several different co-represented oppositions.

The four Aristotelian causes are transformed into four reinterpreted concepts, which
are arranged in tetrahedron-form and their relations are analysed applying the
symmetry properties of this perfect body. The symmetry elements of the tetrahedron
represent oppositions. The four concepts, their arrangement, the oppositions and the
assignment of the oppositions make up the formal system of tetralectics.

In the system of tetralectics, treatment of the difficult consequences of the
interrelatedness of elements of knowledge reveal that the central concepts have the
characteristics of metatheories. These metatheories in the tetralectics of natural
sciences are: material, space-time, action and change. The metatheories are
comparable to conventional theory families of sciences. The division of the central
concepts into sub-concepts facilitates the construction of a specific theory.

The three level description of tetralectics allows the development of a new validation of
statements, and crosswalks between the (meta)theories created by symmetry adopted
transformations guarantee a flexible nature to tetralectics, in this context the Godel
argumentation has a more friendly face.

TETRALECTICS AS A NEW LOGIC

The aim of the different sorts of logic is to arrive at the general rules of reasoning. To
achieve this, a logic has to represent all the relations between the constituents of the
given logical universe. The proper representation of a given logical structure can
significantly stimulate a deeper understanding of the similarity and dissimilarity of
different logics. But what is the suitable representation of these relations? If one tries to
represent the main known logical systems geometrically, only some very simple
geometry can be applied. Most logics have only one — in some cases two —~ dimensional
representations. This is sufficiently illuminating in the case of most logics, but unable to
reflect the rich logical context of many real situations. For example: how can we
represent the multiple connections of a scientific concept? Tetralectics suggests a
solution: to move over to the third dimension. So tetralectics is a logic in three
dimensions.
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Edge oppositions

Hﬁ
Classical and fuzzy logics

& Axis oppositions

Hegelian dialectics

®
Face oppositions
Tetralectics
Figure 1: A possible representation of the Figure 2: Different classes of oppositions in
classical and fuzzy logics, Hegelian dialectics tetralectics.

and tetralectics.

Figure 1. shows one dimensional representation for classical and fuzzy logics, a two
dimensional for Hegelian dialectics and a three dimensional for tetralectics. The way in
which each logical system treats the oppositions and their relations is characteristics.
Therefore, we depict the oppositions coexistent in the same logical system as pairs of
arrows which meet at their peak. The directions of the arrows show the functioning of
the oppositions. Different methods are applied in these different logics at the treatment
of the problem of the coexistent opposites, as can be seen in Figure 1. We can call the
classical and fuzzy logics one dimensional since both the starting points and the
concluding point can be put on one line. In Hegelian dialectics the emergent concept has
new qualities as compared to those of its determinant oppositions. The concluding point
cannot be represented in terms of the starting points, therefore, it opens a new
dimension. Thus the system of the starting and concluding points span a two
dimensional space. Tetralectics uses not two, but several oppositions. To hold them
together and to express their sophisticated relations, we arrange them on a tetrahedron,
thus we need a three dimensional representation.

In fact, there are three different classes of oppositions in tetralectics (which cannot be
distinguished in Figure 1.), namely, the edge, axis and face oppositions in the order of
their appearance in Figure 2. In this figure the similarities and dissimilarities between
the dialectical and the tetralectical treatment of oppositions can be considered. Each
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edge opposition is equivalent to one in Hegelian dialectics (we also call these
oppositions 1 - 1 oppositions), each axis opposition composed of two Hegelian
dialectical one (these are the 2 - 2 oppositions), and each face opposition (1 - 3) link
three Hegelian dialectical oppositions. Tetralectics possesses 6 edge, 3 axis and 4 face
oppositions - as we can see later. There we will use a maybe more transparent notation
for these classes of oppositions.

As an important consequence of this choice the strict unambiguity of the logical
manipulations is lost and a special type of plurality appears in tetralectics. For example:
a scientific concept embodied in a theory has many - but very different - relations to
other scientific concepts. Following the logic of the standard way of scientific theory
building, this complex context of concepts must be essentially simplified. Tetralectics
suggests a treatment for the contextual plurality of concepts. The objective of
tetralectics is to collect the greatest possible number of oppositions of the system
studied, to keep them together and to let them work. The results of their work, i.e., the
more perfect description of the system in question cannot be derived from one theory,
but a class of interrelated theories. Tetralectics suggests a treatment for a plurality of
theories. This treatment for plurality includes a new way of validation, which will be
described in the chapter concerning the levels in tetralectics. In such a way tetralectics is
a postmodern logic.

This allows, for example, the structure of a scientific theory to be analysed. Tetralectics
can be used to analyse and build scientific theories possessing many different logical
structures. In this sense tetralectics is a logic of theory building.

It is an obvious statement that tetralectics refers to the mental representations of reality
and not the reality itself. Therefore, if we can find some general rules, some regularities
in the context of tetralectics, these relations will be valid for scientific theories and not
for reality in a direct way. Tetralectics is a metatheory or a version of general systems
theory.

As in the case of other logics, tetralectics also has a formal and a non-formal aspect. The
formal aspect aims to establish the rules or laws of treating and keeping together the
diverse oppositions, while the non-formal deals with an actual interpretation of a formal
theory, that is to take into account the actual meaning of the opposites. In what follows
we tend to separate the general rules and working of tetralectics (the syntax of
tetralectics) from its interpreted version (the semantics of tetralectics) applicable to
natural sciences. However, this separation seems difficult to us because the
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development of tetralectics was a consequence of a continuous re-thinking of unsolved
problems of natural sciences.

THE BACKGROUND OF TETRALECTICS

We accept the universal validity of the Aristotelian causal theory in the world of
theories. Of course, it seems useful to re-interpret the four Aristotelian causes in our
time. However, only the maintenance of four concepts has significance in the formal
side of tetralectics, even the original Aristotelian concepts (or any other reasonably
chosen four concepts depending on the subject matter of the analysis) could be used in
it. On the other hand, our reinterpretation presented below can be used for a tetralectics
applied to natural sciences and so leads to the set of tetralectical concepts for theory
building in natural sciences.

Aristotelian concepts Concepts in a tetralectics of natural sciences
Matter Matter M)

Form Space-time S)

Efficiency Action (A)

Aim Change ©)

Of course, many other versions of reinterpretation can be constructed. Our choice is
motivated by our detailed analysis of these scientific concepts which will not be
presented here. Applying the above abbreviations, the version of tetralectics based on
this scientific interpretation will be called the tetralectics of MASC (or simply MASC).

Matter

Change Action

Space-time

Figure 3: The framework of MASC
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We accept the universal validity of the Hegelian view on the contradictory nature of
beings. However, in Hegelian dialectics, the prominent role is played by a pair of
oppositions, whereas in tetralectics we prefer the consideration of many pairs of
oppositions studying both the formal and scientific conceptual contexts. In a tetralectics,
of course, the different oppositions are not equally treated. The different oppositions
may be represented by different symmetry elements of tetrahedron, since their
behaviour in tetralectics may also differ. A symmetry operation transforms some of the
oppositions to others while leaving some others unchanged. All of the four Aristotelian
causes can be regarded as the coexistence of a number of certain kinds of oppositions.
Tetralectics is a method for the treatment of several different co-represented
oppositions.

We accept the universal validity of the plurality preference of postmodernism in all the
areas of human activity including science. Tetralectics gives more than one valid
description of an investigated object, but these form a unity in tetralectics. Tetralectics
does not lose true statements in general but it tries to construct different contexts for
them.

The demand for plurality is a common feature in the Aristotelian and in the postmodern
view of the world. However, unlike tetralectics, neither Aristotelian, nor postmodern
philosophies construct an exact treatment for plurality. In tetralectics the plurality is put
into a geometrical context. These aspects can be shown in a possible way drawing an
adequate tetrahedron, as can be seen in Figure 3.

THE FORMAL SYSTEM OF TETRALECTICS

The formal system of tetralectics consists of four central concepts, a definite number of
oppositions, a three dimensional tetrahedron with its symmetries, a concrete
arrangement of the central concepts on the vertices of the tetrahedron and the
assignment of the pairs of opposites to the symmetry operations of the tetrahedron.

In order to evolve the system of tetralectics in a more plausible way, here we will use a
scientific representation of the tetralectical system instead of the more formal
description. In such a way the four Aristotelian causes are reinterpreted and applied as
the very basic concepts of this implementation of tetralectics. As we mentioned earlier,
the Aristotelian concepts of matter, form, efficiency and aim are transformed into the
concepts of matter, space-time, action and change. These concepts are arranged in a
tetrahedron-shaped form and their relations are analysed applying the rich symmetry
properties of this perfect body. The edges and symmetry axes of a tetrahedron represent



TETRALECTICS 301

the basic oppositions (e.g., finite-infinite, discrete-continuous, open-closed, local-global,
static-dynamic, etc.) that we use in our scientific analyses. An arrangement of the
oppositions is shown in Figures 4 to 6. The concepts and their relations represented in
Figures 4 - 6 completely define a tetralectics of natural sciences, i. €., the tetralectics of
MASC.

Since symmetry plays such a crucial role in tetralectics, here we present a brief review
of the connections between the oppositions and the symmetry of the tetrahedron. At first
we use the edge oppositions to give an impression of the use of symmetry, then we give
a second, maybe more elaborated approach.

The symmetry operations of the tetrahedron are described in the first table. Each
reflection (o) leaves one edge opposition unchanged and another reversed. If we take
the plane containing the vertices M and S and the point halving the A-C edge, reflection
through this plane leaves the M-S edge (the discrete-continuous opposition) unchanged,
A-C (global-local) reversed, and mixes the other oppositions (e.g., A-S — C-§,
M-C — M-A, etc.; cf. Fig. 4.). Figure 6. helps us to find a C, axis of the tetrahedron,
since the MS-AC (static-dynamic) axis opposition that is shown there lies on one of
these C, axes. The C, operation reverses the two edge oppositions which the C, axis
goes through, namely, the M-S (discrete-continuous) and A-C (global-local) and mixes
all the other the edge oppositions (e.g., A-M — C-S, M-C — A-S, etc.). The S, axes are
coincident with the C, axes, which is not surprising since S, applied twice yields C,
(S = C,). The S; operation mixes all the edge oppositions (e.g., A-M — S-A,
M-C — A-M, etc.). The equipositional-hierarchical (M) face opposition shown in Fig. 5.
lies on one of the C; axes. The C; operation mixes all the edge oppositions
(e.g., A-M — §-M, S-C — C-A, etc.). Finally, E, the identity operator leaves every
opposition unchanged.

We can assign each opposition to one symmetry element (rotation axis or reflection
plane) which is invariant for the corresponding symmetry operation (e.g., rotation,
reflection). For this, we need the characters of the symmetry operations' representations
on the bases of different oppositions. The character shows the result of the symmetry
operation as the sum of the invariant (1) and antisymmetrical (-1) subjects. (An
opposition is antisymmetrical to an operation if the latter reverses the current
opposition.)
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Table 1
Characters
on the basis
Symmetry of Description of the
operation | Edge (1-1) Face (1-3) Axis (2-2) symmetry operation
oppositions ~ oppositions  oppositions
(6 G)) 3)
E 6 4 3 Identity
o 0=1+(D* 2 1 Reflection through a mitror plane
C -2* 0 1 Rotation through 360/2 degrees
Cs 0 1 0 Rotation through 360/3 degrees
Sy 0 0 -1* Rotation  through 360/4
degrees followed by a
reflection through a plane
perpendicular to the axis of
rotation

* a negative number indicates that the operation reversed the opposition(s) [change in

polarity]

Since three (0) mirror planes contain the same (1-3) and two oO's contain the same (2-2)
oppositions, to get an unambiguous assignment we should assign the mirror planes to
the class with which they have a one-to-one correspondence (which is the class of (1-1)
oppositions). The assignment of the remaining classes of oppositions is straightforward.
The second table shows the symmetry operations, symmetry elements of the
tetrahedron, and the assignment of the oppositions to the symmetry elements:

Table 2
Symmetry | No.of [Symmetry| No. of No. of |[Class of the assigned
operations | symmetry | element | symmetry assigned oppositions
operations elements| oppositions
E 1 E 0 0
o 6 o 6 6 Edge (1-1)
3C, 3 C, 3 3 Axis (2-2)
4C, , 4C7 8 C, 4 4 Face (1-3)
3s,, 35, 6 S, 3% 0
SUM 24 13+3 13

* coincident with the C2 axes.

The above mentioned property of the mirror planes, which may make finding the proper
assignment more difficult, draws our attention to the necessity of axis and face
oppositions. To make this clear, let us consider the example of the face (1-3)
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oppositions. Let us choose one vertex of the tetrahedron. There are three mirror planes
which contain it. They also contain the three edges [(1-1) oppositions] connecting the
chosen vertex to the other three. The equivalence of these three connections along the
edges (which is also supported by the C; symmetry element) shows that this vertex has
a special relationship to the triangle formed by the others, which the edge oppositions
cannot express. Similar conclusion can be drawn in the case of the (2-2) oppositions as
well.

Besides the properties described above, o, C, and S, have a special feature, which may
add some peculiarity to the oppositions assigned to them, namely, that they change the
polarity of some of the oppositions not invariant to them (and S; even swaps some
oppositions), adding new elements to the relations between the oppositions. At this
stage of the development of MASC presented here these relations have no crucial role,
therefore we will disregard some of them. All the relevant assignments in MASC are
shown in Table 2.

- Edge (1 - 1) oppositions of MASC
discrete - continuous (M - S)
global - local (A - C)
stochastic - deterministic (C - S)

A homogeneous - inhomogeneous (S - A)
causal - teleological (A - M)
ordered - disordered (C - M)

continuous

Face (1 - 3) oppositions of MASC

hierarchical - equipositional (M)

/// quantity - quality (S)
/s Ty L 8
7 //{///f, o sl ey (4

-

C
Figure 5




Axis (2 - 2) oppositions of MASC

static - dynamic (MS - AC)
closed - open (MC - AS)
individual - collective (SC - AM)

Figure 6

THE SYSTEM OF TETRALECTICS OF THE NATURAL SCIENCES

Here we present some general aspects of the tetralectics of MASC and those special
versions of metatheories which can be constructed on the basis of this tetralectics.

As follows from the preceding ideas, the tetralectics of MASC consists of four central
concepts (M, A, S and C), 13 pairs of oppositions (6 edge, 3 axis, and 4 face oppositions;
specified in Figures 4. - 6.), a tetrahedron with its symmetry elements given in Table 2.,
and the arrangement and assignment of these constituents presented in Figures 4. - 6.

A symmetry element, which is not assigned to any specific opposition, the identity (E),
represents the whole selected and assigned system of oppositions of the given version of
tetralectics. Those pairs of oppositions were chosen into the class of edge or (1 - 1)
oppositions whose constituents determine each other without any other relations, as in
the cases of discrete - continuous or homogeneous - inhomogeneous. The conceptual
structure of the axis or (2 - 2) oppositions is more complicated, because they are
basically connected with two pairs of edge oppositions. For example, the meaning of
static - dynamic pair of concepts is influenced by both the discrete - continuous and the
global - local oppositions. These relations call attention to the understanding of the
concept of static as a result of the coexistence of the discrete - continuous and global -
local oppositions. This is an unusual aspect of this concept, so its appearance in
tetralectics makes our conceptual analysis more sensitive and complex. Of course, the
situation is the same in the cases of the other axis oppositions, too. As was mentioned
earlier, the face (1 - 3) oppositions unify three pairs of edge oppositions. This relation
emphasises the very rich conceptual content of the face oppositions. For example, the
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meaning of the quantity - quality oppositions is influenced by the ordered - disordered,
the global - local and the causal - teleological oppositions. The details of the relations of
the face - edge oppositions will not be analysed here, it is, perhaps, noteworthy that
these aspects of quantity - quality concepts would probably be important, for example,
in evolution theories. All these are very important relations between the three classes of
oppositions, but it would be important to recognise that, at the same time, the reverse
relations are working too, i. e., the meaning of an edge opposition is influenced by those
axis and face oppositions in which the edge opposition appears.

So MASC is a very complex system of concepts, relations and operations. In our view
MASC is able to represent all the elements of scientific discourse: the concepts, the
statements, the theories, the disciplines, the word views and so on. Some of them
preserve their original form in MASC, but most of them have to be reinterpreted
applying the view of MASC. So we can use MASC to analyse the conventional
scientific practice and products, and following the suggestions of this tetralectics we can
construct a new type of knowledge about nature.

How is MASC able to reflect the scientific descriptions of our world? There is no room
to present all of details here, but a few typical aspects will be mentioned below.

In the framework of MASC we can consider the interconnectedness of elements of
knowledge produced by the natural sciences. According to the received view the right
approach to this problem is to construct more and more universal scientific theories dnd,
finally, science can produce one unified theory which describes all aspects of nature or
of a piece of nature at least. However, following this practice science has to face many
difficult conceptual and methodological problems. These problems appear at different
levels of science. If we take the level of theories, the Gddel theorem causes difficulties;
within the specific scientific disciplines some important dualities (particle - wave,
locality - globality, etc.) seem to be problematic; between the different disciplines, the
unsatisfactory treatment of the reductionism - holism problem manifests itself; some
views and the ideas of natural philosophy are without enough clearness, and so on.
MASC tries to treat these difficulties together applying a peculiar methodology to the
analysis of natural sciences. This peculiarity appears in both of the - more or less -
special elements of the methodology (conceptual analysis, study of analogies,
construction of a method for building new disciplines, etc.), and the functioning of
MASC in a special way.

First of all, the system of the relations of concepts applied in MASC will be outlined
here. The relations between the classes of oppositions have already been treated. Now
the relation of oppositions and central concepts is the topic. According to MASC all
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four central concepts have to apply to describe nature, however, most scientific theories
do not follow this idea, so they can treat only one or other aspect of it. MASC suggests a
tetralectical combination of the different aspects formulated in different theories. The
total description is the matter of four different, but interrelated theories, which are built
up around the four central concepts. The characteristics of these theories depend on the
features of the given central concept. The feature of the central concepts can be
characterised by the systems of oppositions of MASC. A central concept is associated
with a vertex of a tetrahedron. Three edges meet in a vertex and three axes indicate its
position, moreover, a vertex is a basis of a face in tetrahedron. Because of the symmetry
operations associated with these geometrical elements representing oppositions, the four
central concepts can be characterised by the relevant different set of oppositions. Here
we apply a naive topology: in determining the properties of a central concept at a vertex
of a tetrahedron, the nearer element from the pair of the opposite will be the dominant
contributor. The face oppositions situated at certain central concepts have an eminent
role: the main property of the given central concept is determined by this pair of
oppositions. In such way we can characterise the concepts of matter, space-time, action
and change. The conceptual structure of these central concepts of MASC seems to be so
highly complex that perhaps it would be better to call it a system of concepts or some
kind of a theory. However, real scientific theories have a rather close relation to
experiences, so seeing that the constituents of this system of concepts or theory in this
sense do not have a very concrete content, they are not interpreted in their details, the
name metatheory would be more expressive instead of the other ones suggested earlier.
We will adopt this idea. So we can speak of four types of metatheories in the tetralectics
of MASC: material, space-time, action and change metatheories. In Table 3. the set of
the properties associated with the central concepts or metatheories in MASC is
presented.

According to tetralectics, a metatheory in MASC is not able, even at this high level of
complexity, to describe nature, but the system of the four metatheories can do that. Of
course, there is a series of symmetry operations to transform them into each other. In
such a way the elements of the different metatheories (concepts, statements, laws,
problems, theorems, etc.) can be assigned to each other. A great number of analogies
can be found, but the different conceptual context makes these theories different ones.
The tetralectics of MASC, in fact, is a meta-meta theory, a metatheory for the four
metatheories in MASC. It is interesting that its epistemological nature is rather similar
to a normal theory than a metatheory. There seems to exist, in this case, some kind of
analogy between the dialectical operation of double negation and the doubly applied
meta-level view.
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Table 3

The collection of the properties connected to central concepts/metatheories

Central concept/Metatheory Properties

static, closed, individual
M/Material discrete, stochastic, disordered
hierarchical - equipositional

static, open, collective
S/Space-time continuous, homogeneous,

causal

quantity - quality

dynamic, open, individual
A/Action global, deterministic,

inhomogeneous

possibility - reality

dynamic, closed, collective
C/Change local, teleological, ordered
finite - infinite

Different families of theories or metatheories can be found in the standard scientific
description of nature, too. For example, if we consider the physical theories, four groups
can be identified. The four metatheories in tetralectics can be compared to these four
groups of theories of physics:

Metatheories in tetralectics Theory families in physics
Material Corpuscular

Space-time Field

Action Variation principles
Change Conservation laws

A comparison of the relevant theories and concepts reveals a deeper connection between
MASC and theoretical physics. There are some - more or less - obvious similarities
between the metatheories and the physical theory families. However, a very important
difference is that each of the physical theory families claim absolute universality in the
description of nature, so the different families can be considered as alternatives which
exclude each others, whereas metatheories in tetralectics cooperate with each other, and
only the whole of MASC claims to its absolute universality. Like in MASC, in the case
of conventional physical theories one can also identify some important transformation
rules, principles or theorems (i.e., Noether theorem) between the groups of theories, but
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in the conventional physical theories these transformation rules and theorems do not
constitute a clear system, in their appearance, working, form and interrelatedness the
contingency has a dominant role.

There are some other possibilities to find connections between the MASC and the
conventional scientific practice. Sometimes it is interesting to know how a specific
scientific concept situated in the conceptual field of tetralectics; which concepts are
similar in different scientific theories, and what features are common in them. To study
these questions sometimes we have to leave the vertices of the tetrahedron. and we have
to move along the direction determined by the very nature of the concept. Not only this
results in a more realistic representation of a conventional scientific concept, but it gives
a special “fuzzy” features to MASC. Consequently, MASC is a proper tool to find
similarities or analogies between the concepts, laws, principles or problems of different
disciplines of natural sciences.

Here we should mention, that a theory in the standard scientific practice and a theory in
tetralectics of MASC is not the same thing. They differ from each other in many
aspects. To make these differences clearer we have to say something about the position
of theories in MASC. As was mentioned earlier, tetralectics of MASC itself is a meta-
metatheory which includes four metatheories. But within these metatheories we can, of
course, identify or construct theories. For this purpose we have to find some more
concrete concepts, which are closer to the level of experience, so applying them we can
state some relevant basic statements, or axioms for theories. To achieve this, the
reduction of complexity of the central concepts would perhaps be a natural aspiration.
So we divide all the four concepts into a pair of sub-concepts. These sub-concepts play
the same role in the tetralectics as the central concepts do. Because they represent
different sides or aspects of the certain central concepts of the tetralectics, so they have
a reduced complexity. In MASC we chose the following sub-concepts dividing central
concepts:

Central concepts Their sub-concepts

Matter substrate and structure
Space-time space and time

Action action and interaction
Change transformation and equilibriom

A theory in MASC gives some relations between the sub-concepts presented here.
There are several (but finite) possibilities to find relations between these sub-concepts.
We prefer such theories in MASC, whose axioms consist of borrowed constituents from
the all the different central concepts. For example an interesting theory can be
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constructed defining the action - time, space - transformation and the interaction -
equilibrium relations. Such theory can be represented by a graph connecting the sub-
concepts on the tetrahedron. As a consequence of the general features of MASC, it is
clear that we can move between the different theories of MASC by applying the
symmetry relations, and these transformations can be represented by the relations of
theory-graphs. The domains of validity of these tetralectical theories depend on the
chosen sub-concepts, so many very special aspects of the nature can be described with
tetralectical theories. The borderlines between the different tetralectical “disciplines”
situated in other positions related to the conventional ones. However the details of any
kind of concrete theory in MASC is not the topic of this paper.

So the tetralectical theories can be very different from the conventional theories because
of their very different conceptual structure and their mutual, well-defined relationships
to each other, but the practical use of them is the same as that of the standard scientific
theories. They have to fulfil the same role in the scientific discourse.

In some cases it is handier to consider the projections of MASC instead of its 3D form.
Many interesting consequences became clear if we study only a proper projection of the
tetrahedron. Of course, the MASC is equivalent with a definite system of its projections.
We can project the tetrahedron into the plane of its two axes along its third axis. These
three projections are the most important projections and they are very useful in the
scientific analyses. An illustration can be find in Figure 7.
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losed collective .
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Figure 7: The projection of MASC along the static - dynamic opposition.
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ON LEVELS OF TETRALECTICS

From the construction rules it is evident that in tetralectics we do not want to describe
reality by only one general theory, but we have a three-level description.

The lowest level is the level of standard scientific theories. Above this level is the level
of metatheories. The highest level in tetralectics is the whole system of tetralectics,
which organises the four metatheories into one system.

1
Metatheories
|
Theories

Figure 8: The three levels of tetralectics.

The validation of statements is possible at both of these levels but the rules and the
results may be different. At the lowest level (the standard scientific theory level) we
accept the conventional rules of logic, so we can use all the methods and results of
scientific theories. At the middle level, this is not so simple. First we should introduce
our non-conventional logical definitions for this level. A statement is ftrue in a
metatheory if it was true at the scientific theory level, otherwise we call it not-true. We
do not distinguish between a false and an undecidable statement at this level. So there
will be not-true statements which are false or which are independent from the axioms of
that theory (it is impossible to prove that they are true or false from this set of axioms).
Finally we arrive at the top level.

A statement is true in tetralectics, if it was true in any of the metatheories (at the middle
level). A statement is false in tetralectics, if it was true in none of the four metatheories.
At this level the excluded middle principle operates.

There is still the question, why use tetralectics? What does it avail? We can get help
from the system relations of tetralectics.

On the level of metatheories we can transform a set of axioms of a metatheory into
another one by applying the symmetry relations of the tetrahedron. The problems are
not necessarily transformed, but they can be transformed with the same method as the
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axioms. The statements can be stated in any metatheory, and can be validated as well,
the question is only the result. They can be handled much more easily within the
framework of tetralectics, because as was mentioned already, we do not distinguish
between the false and the undecidable case.

The transformation of the problems between theories is a question of symmetry
relations. We prove a theorem in one metatheory and we want to know whether it is true
or false in other metatheories. How can we validate that the statement is true or false in
another metatheory? Let’s take the following two statements as examples:

M1+1=2

(2) Bolzano-Weierstrass theorem: A continuous function on a closed interval has all the
function values between the endpoint function values.

Both statements are true in tetralectics. If the axioms contain the integer numbers, then
in the first case the transformed axioms of the other metatheory will also contain these
axioms without any change, so statement (1) will be true in any metatheory. This is
because the prerequisites of the statement are independent from the transformed axioms.
However, if we transform the axioms with a symmetry operation reversing the
opposition of continuous - discrete, then the situation is quite different in the case of
statement (2). The prerequisites of statement (2) contain the continuity so it will be true
only in the metatheory of the continuous side of opposition, because this metatheory
will contain an axiom defining "continuous". In the discrete side it will not be true,
because this other metatheory will contain "not-continuous".

If our transformed axioms do not guarantee the prerequisites of the statement, for
example "continuity", then the theorem will be false. But if the transformed axioms are
independent of the prerequisites of the statement, then the statement will be true in the
other metatheory as well. So we should transform the axioms by the symmetry relations
and deduce the statement from the axioms. If we get the same result, then the changed
axiom is not relevant for the statement. If we get the opposite result, then the changed
axiom is important in the statement. With this method we can achieve a deeper
understanding of the essence of the statements.

Such transformations have a crucial role in the famous Gédel theorem.

Godel's incompleteness theorem states, that if we have a set of axioms which is
meaningful enough, and the system does not contain contradiction, then we can always
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construct a statement which is true, but we cannot prove the statement, and cannot prove
the opposite of the statement, so this statement is undecidable in this system.

The Godel's incompleteness theorem will be valid at the level of theories. But with
tetralectics, there is a chance to transform a so called Gédelian statement into another
theory, where it is not necessarily Godelian even at this level. The proof of the Gédelian
theorem is based on the numbering of every axiom and statement. Strikingly, the
transformation may change this numbering. This change implies that the formerly
Godelian statement can become decidable, and another statement can become Godelian.
At the meta-meta-level of tetralectics, the Gddelian problems have a quite similar
treatment to those of at the level of theories.

What is more, the metatheory level may contain apparent contradictions, because it is
not a strict theory, but a framework for theories, which consists of concepts, principles
and features. For example, the metatheory of geometry (which is not identical with the
theory of geometry) contains the axiom of parallels and the negation of the axiom of
parallels at the same time. So this means that a metatheory in tetralectics may contain
contradictions. In this sense the metatheory concept, and so tetralectics, can be complete
without breaking Gédel's incompleteness theorem.

As should be clear from the foregoing, we can live with the Godel's incompleteness
theorem in a new, friendlier way.

SUMMARY

We presented here some ideas to introduce a new type of logic named tetralectics. How
are the features of this logic determined? In any kind of logic there is a formal
framework which is, more or less, independent from the contents of its statements. In
tetralectics we have four concepts, thirteen pairs of oppositions as the very constituents
of this logic, and a collection of the possible operations on these constituents manifested
by the symmetry operations of a three dimensional tetrahedron. For the construction of
the whole system of tetralectics we have to arrange the four concepts on the vertices and
arrange the oppositions on the symmetry elements of tetrahedron. Fixing all of these, a
special version of tetralectics is specified and defined. Applying some elementary
combinatorics, the exact number of arrangements on the tetrahedron can be calculated
getting by this way the possible number of different kinds of tetralectics. In the
framework of the given tetralectics there can be identified three levels of the
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description. The first level, the level of theories is related directly to the world of
experiences. In the next level of tetralectics we have four metatheories dealing with the
theories, and finally on the third, meta-metatheoretical level we can treat the relations of
metatheories. As follows from the rules of construction in a concrete version of
tetralectics we can construct a definite number of theories, while we have four
metatheories and one meta-metatheory.

If we want to use this logic to analyse some kinds of phenomena, we have to select four
characteristic concepts as central concepts and 13 characteristic pairs of oppositions
which probably can characterise the given phenomena. In such a way we can construct
and study the tetralectics of different beings. Our presentation given above depicts some
details of a tetralectics of natural sciences, which we called tetralectics of MASC. It has
also three levels: the level of scientific theories, the level of Material, Action, Space-
time and Change metatheories, and the meta-meta level of MASC. We can use this
tetralectics as an analysing tool for the conventional scientific theories and, on the other
hand, we can construct special kind of tetralectical theories. At this point we can
determine again all the tetralectical theories that are possible, and we can use the four
metatheories and the whole MASC to study them. Of course, a different view on the
essential aspects of natural sciences represented by the different central concepts and
oppositions could produce different tetralectics.

For analysing other phenomena, we can define their special tetralectics. Any kind of
complex phenomenon seems to be a good subject for tetralectical thinking. We have
some ideas on the tetralectics of religious systems, social systems, psychological
phenomena and the systems of language. Constructing and applying these tetralectics a
special kind of complexity and exactness can be simultaneously enforced on the
description of these fields - at least in this postmodern logic.






Symmetry: Culture and Science
Vol. 8, Nos. 3-4, 315-332, 1997

SYMMETRY: ART & SCIENCE

REFLECTIONS ON ROTATIONS

John G. Harries

Exponent of notated visual art, (b. England, 1928)
Address: 44/7 Hermon Street, P.O.B. 85412, Mevasseret 90805, Israel

Fields of interest: Graphic, computer and video art, movement analysis
(also T'ai Chi Chuan).

Publications with relevance to symmetry: Language of Shape and
Movement, Tel Aviv: Tel Aviv University (1983); Symmetry and Notation:
Regularity and Symmetry in Notated Visual Art, in Hargittai, 1., ed.,
Symmetry: Unifying Human Understanding, New York: Pergamon, (1986)
pp. 303-314; Symmetry in the Movements of T'ai Chi Chuan, Computers
and Mathematics with Applications, 17 (1989), 4-6, pp.827-835.
Exhibitions with relevance to symmetry: (1969) New Tendencies, Zagreb,
Yugoslavia (participation); (1971) Art and Science, Tel Aviv Museum
(participation); (1972)  Festival de Due Mondi, Spoleto, Italy (in
conjunction with performances of Noa Eshkol's Chamber Dance Group);
(1973) Graphic Art and Movement Notation, Museum Haaretz Science and
Technology Pavilion, Ramat Aviv, Israel; (1992) 'Variations on a 4
Pomegranate’ - video installation and paper cuts, Kalisher Five Gallery, Tel Aviv (in conjunction with
‘Movement Notes' exhibition); (1993) 'Emergences’, ZOA House, Tel Aviv (in conjunction with performances
of Noa Eshkol's Chamber Dance Group).

Abstract: A sequence of 16 pictures employing dynamically conceived shape is used to
demonstrate how symmetry operations can constitute one of the connective forces in a
work of visual art that is systemic and periodic. The aim of the study was to generate a
set of pictures comprehensible by virtue of the appeal to transformations that have been
present in art for thousands of years. The sequence was composed in EW movement
notation, the principles of which are briefly sketched. The composition of the sequence
is explained, using illustrations together with their symbolic expression in movement
notation, and also typographical representations of aspects of its overall structure. The
visual realization of the structure comprises the full sequence of 16 pictures.
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INTRODUCTION

The study presented here is a part of work begun over 30 years ago, all of it based upon
the nse of Eshkol—Wachman (EW) movement notation as a tool of composition in
visual art, including kinematic forms such as videotapes. Since EW movement notation
entails the perception of movement as shape, it is the natural vehicle for this work, in
which shapes are perceived as the paths of movements. Indeed, the notation was the
catalyst in the conception of this model for the generation of shape. It provides a firm
basis for the organisation of the material, becanse the conception of visual forms as
movement iraces allows their precise definition in the notation. EW notation is ideal as
the support for a serial or periodic approach to composition which rests upon guantities
and order. By its use, it is possible to control and pursue complex and extensive
variations of shape, within a reasonably concise symbolic scheme. Furthermore, anyone
who is literate in the notation is able to follow in depth the formal operations it
describes.

The aim of the present study was, however, to generate a sequence of pictures that
would be as far as possible comprehensible independently of any knowledge on the part
of the viewer, of the ideas underlying movement notation. This leads to the question:
upon what could such comprehension be based, if the work of composition is in fact
based upon those ideas? The solution is here assumed to lie in the intuitive and probably
innate perception of transformations such as symmetries, which have been present in all
art for thousands of years (Weyl,1952; Avital, 1996; Avital, under review). These
verbally nameable operations would be reflected in any thoroughgoing notation used in
the domain of visual art, including them as an integral part of a single compositional act.
‘Where EW is the notation that serves this end, the quantification of these operations will
also certainly be possible (Harries,1986).

In this study, operations on the basic set and on its successive transformations are afl
intended to be intuitively identifiable and verbally nameable, and also quantifiably
expressible in EW notation. Movement notation provides for the quantified approach
essential to any well defined composition. At the same time, the presence of quantitative
differences can be detected even without knowledge of the precise values involved. For
the sake of simplicity, the principles through which this study is organised were
confined to two types of transformation of the motif series.

The employment of EW movement notation in visual art, is itself inevitably based upon
some intuitive transformations: recursion, rotation, scaling, and positive/negative sense
of movement; and it necessarily involves taking into account other operations such as
sefection of trace type, colour modification, layering.

-
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In this black and white sequence, the basic motifs are obtained by splitting up a single
motif taken from an earlier sequence in colour (“Emergences”, 13 paper cuts, first
exhibited in Tel Aviv, 1992). The composition of that sequence of pictures was based
entirely upon a serial and periodic approach. In the present case, a similar serial and
periodic approach manifests an overall systemic structure, in which the ordered
reduction of a complex pattern to a basic set of motifs is followed by a cumulative
redevelopment of that set through successive transformations and recombinations.
These metamorphoses will be described in the text, both verbally and in terms of
movement notation.

The use of EW movement notation in visual art has been described extensively
elsewhere (Harries, 1969, 1975, 1983); for the purposes of the present atticle, a brief
outline of this application is provided in the next section.

EW movement notation

A subset of Eshkol-Wachman (EW) movement notation serves abstract composition of
visual images in several ways: as a record, for communication, for systematizing, and
above all for formulating ideas in symbols that make it possible to grasp structure
through a scheme of manageable size. Any bounded area can be regarded as the path of
the movement of a line, called in descriptive geometry a 'generatrix’. The line sweeps
out a trace, the shape of which is determined by the way the generating line moves. This
idea is useful so long as it is possible to define exactly how the line does move. This is
achieved when the movement is expressed in the symbols of EW.

The primary use of EW notation is in the context of human movement (Eshkol and
Wachman, 1958). Movements are treated as the paths produced by the limbs, which are
regarded, for the purpose of analysis, as chains of articulated axes.

Using EW, it is possible to define the movement of any line, and thus to describe shapes
in terms of movements of articulated generating lines, in relation to a system of
reference encompassing two or three dimensions of space, plus time. The instructions of
the notation are general in that they apply to any medium, but specific in the way they
work for each - for instance: pencil and paper, computer graphics as in the present
study, or (when the moving lines are the axes of limbs) human performers.

Seen in this way, a still picture is not only a motionless object but also one stage in a
formative process, and the potential point of departure for subsequently emerging form.
EW notation preserves the continuity of the static and dynamic, and of the two- and
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three-dimensional. In three-dimensional space, if a single generating line moves about
one of its ends, which remains at a fixed position, the line may sweep out a curved
surface or a plane. (In the case of a solid limb, rotation about its own axis is also
significant.) In two-dimensional space, a circular shape results. A more complex shape
is obtained if a second generator is articulated with the moving end of the first, and
simultaneously moves about their common ‘joint'. Modifications of the circular path
also result from any changes of length of the generator. Chains of any number of such
generators may be formed, moving about the points of linkage.

In every movement of articulated generating links, these are characterised in terms of
EW as 'heavy' or 'light', i.e., carrying or carried by a neighbouring link. (A generator
may simultaneously carry one neighbour and be carried by another.) When a generator
moves, it carries with it all other links that are further away from the origin, thereby
changing their positions; the origin of the heaviest link is analogous to the base of
support in the case of a living organism.
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Figure 1

When independent movements of the light links occur at the same time as they are
carried by a heavy link, the change of position of each link is the result of the
simultaneous movement of the carried link together with the movements of the heavier
links. The movement of each generator is written as though in relation to an immobile
carrying link; but in fact the path of this movement will be modified because its heavy
neighbour moves as well; see Figure 1. The figure shows simultaneous movements of
generators, both as successions of positions and as the shapes that they sweep out. In (a)
the carried link moves at twice the rate of the carrying link; in (b), it moves at half the
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rate of the carrying link. The varied synchronisation of the movements of two or more
articulated generators is the source of the apparently endless wealth of shape that can be
obtained and composed using this system of representation.

The notation of each of the shapes in the figure indicates, to the left of the frame, the
relative lengths of the generating links. Above the frame, the value of the unit of
movement is given (one unit = 10 degrees). The plane in which the movements take
place is given in parentheses; following these, arrows indicate the sense of the
movement (clockwise or counterclockwise), and numbers specify the amount (in units)
of the movement of each generator. If the length of a generator were to change, this too
would be indicated in the appropriate horizontal space. Specifications of colour can be
added in an additional space, parallel with the movement score itself.

Work designed to be displayed in time is conveniently provided for in EW, where the
measured flow of time is represented by the columns of the basic grid, upon which the
synchronised patterning of movements of the generating links is written and easily
perceived. The information conveyed in these scores is implemented as abstract moving
computer graphic images, or as videotapes. The quantitative nature of EW makes it
ideal for computer input. The software I have developed provides for the entry of data in
an EW score on screen; when this score is completed, the visual process it represents is
displayed in movement on the screen, and can be recorded on videotape (Harries,
1981,1983).

All of the work of visual composition is written in the same notational system and does
not require new parameters or new modes of symbolisation for different projects. The
generality of the notation is more than sufficient and it can equally well encompass the
domain of three-dimensional structure. Furthermore, shapes and processes are defined
with as much accuracy as can be matched in the chosen medium; this allows both for a
maximum of control and for great subtlety of variation.

The picture sequence: 'Reflections on Rotations'

This picture sequence is intended to be in principle comprehensible without special
knowledge of the means used in its composition. The use of movement notation in
generating such a picture sequence involves processes that can be learned, and any EW-
literate person could understand the structure by studying its score. It is, however,
doubtful whether even such a person would be able to follow the structure in its entirety
without studying the score, if there were no visually explicit integrating principle.
Therefore, while this study is firmly anchored in every detail to definitions and
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procedures of variation formulated in EW notation - which guarantees full control of the
compositional procedures - at the same time, all compositional choices were made in
cognizance of the nature of the transformations that result from those procedures, and
from the way in which they are bonded together by their ordering in relation to one
another. To understand the meaning of the structure is to understand the place of a motif
(in any one of its transformed states) within a picture; the place of a picture within a
group of pictures; and the place of a group within the whole. (This is the essentially
hierarchical principle which Avital funder review] has pointed out as being at the
foundation of all viable art.) If the bonding principle is one that is universally
understood in visual terms without the help of verbal or other symbolic explanation, it is
reasonable to hope that both an observer who is not EW-literate and an observer who is
EW-literate but had no access to the score, would be able through the visually
apprehended structural procedures that emerge in the composition, to perceive the
meaning of the whole in visual terms. It may be that even such a simple composition as
the present is not immediately obvious; instant comprehension is, however, not the aim.

The concern was, then, to present a serially formed picture sequence, designed to be
directly — i.e., visually — understood as a single systemic structure, by virtue of its being
bound together by familiar and intuitively comprehensible transformations. The
transformations chosen were threefold rotational symmetry, and reflective symmetry.
These transformations were to be unambiguously specified in EW Movement Notation,
no less explicitly than were the details of the motifs and series out of which the work
was formed. The whole sequence is shown in Figure 7.

In the following exposition, no special previous knowledge is assumed on the part of the
reader. It includes illustrations in which the same idea is conveyed symbolically in
movement notation, and also visually by the shapes generated in accordance with the
notation. Some simple typographical schemes are also used to indicate aspects of
general structure without going into detail.

1=1°
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Figure 2
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Movements of a linkage of four articulated axes are specified (Figure 2), and the
trajectory of the distal end defines a curve, G.

The curve G is used as the visual generating
link in a movement sequence; i.e., its
movements are assumed to generate shapes.
The curve G is substituted for the 'lightest'
(upper) link in the three-movement sequence
which gave rise to the curve itself. (Its axis
for this purpose is the line joining the two
ends of the curve.) This is illustrated in
Figure 3; the states of this new curved link
are shown as they appear at the beginning and
end of each movement.

Figure 3

The other three links are not visual, but
contribute to the form of the shape generated, by
carrying the (independently moving) curved
generating link. This sequence is repeated a
further three times, from the states reached.
Figure 4 shows the notation of the movements,
and position lines selected from the path they
sweep out.

G G G G
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a b c d

Figure 4
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The four elements a, b, ¢, d, are generated as the four consecutive parts of this extended
sequence. They are recombined (with a single shift of the sequence) to form four
motifs, A, B, C, D, as shown in Figure 5.

a b c d
d a b c
Motif A Motif B Motif C Motif D
Figure 5

These form a group of four pictures: | A : B : C: D1 which constitutes the central
group in the whole series. Each motif contains one element in common with each of its
neighbours, emphasizing sequential continuity between the four. Each motif is made
more readily identifiable by being displayed as a different type of trace: fully swept
trace, trajectory, and selected position lines from the swept path (in two different
weights of line).

In the following schematic representation of the structure of the entire series, the groups
are separated by vertical bars, and the pictures within the groups are separated by
colons:

|ABBCBCCD |ABBC:BCCDIAB:BC:CDIA:B:C:DIAB:BC:CDIABBC: BCCDIABBCBCCD |

The groups to the left and right of the central group contain increasing accumulations of
the motifs, so that their complexity increases with their distance from the centre. In the
groups to the left, the pictures at successive levels (groups) are connected by relations of
reflective symmetry (g). In terms of EW movement notation, this means that the
movements of the links that form each motif start from positions bilaterally symmetrical
to those in the appearance of the same motif in the group next nearest to the central
group; and the links move in the opposite sense to the movements that produced the
same motif in the group next nearest to the central group. The groups on the right are
connected by relations of threefold rotational symmetry (Cs;), expressible in EW
notation as reiterations of the motif at a series of positions separated by intervals of
120°. In all appearances of the motifs in their various transformations, the initial
positions of the 'heaviest' links are permutations of the positions (.0), (.3) and (.6) where
1=40".
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A diagram of the structure

Since it is intended that the structure be perceived in the picture sequence itself, to
describe it in words and diagrams may appear to be merely paradoxical and superfluous.
But in fact their use need no more interfere with a proper appreciation of the
composition than consulting a map detracts from the direct viewing of the actual terrain.
A map represents only certain aspects of the actuality, but this very selectivity may
facilitate an overall understanding,.

In the typographical scheme given above, only the additive aspect was represented. The
next ‘'map' is a schematic representation of the interrelation of motifs, transforms,
combinations, and levels of hierarchic order. In Figure 6, the hierarchic order is shown
integrated with the composed sequence.

ABCD ABCD |

S }

Figure 6

In this scheme, A, B, C and D again represent the motifs. The boxes indicate pictures,
each labelled with a number vertically beneath it. All pictures shown on the same level
on the page belong to the same level of order. Arrows indicate the direction of ascent to
a new level of order, and transformation of the motif (by reflective symmetry or by
rotation). All states of the motif from lower levels appear together with each of its
transformations. If the pictures are viewed in order from 1 to 16 (or indeed the contrary
- from 16 to 1), the changes consist firstly of subtractions of transformed motifs from
level to level, and continuity (similarity) is revealed through the gradual isolation of the
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original, undeveloped motifs. This process comes to completion in the central group (7
to 10). From that stage onward, the changes consist of additions of transformed
manifestations of the motifs, while continuity is further maintained through the
persistence of the transforms that have already appeared at lower levels.

A 'reading’ of the outer groups of pictures depends more upon visual differentiation than
is the case in the more central groups, which rather invoke the retention of the images in
visual memory when viewing individual pictures as interrelated members of a group.

The full picture sequence is shown in Figure 7 (1-16).

Figure 7 (3-4)
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Figure 7 (5-6)

Figure 7 (7-8)
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Figure 7 (9-10)

Figure 7 (11-12)
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Figure 7 (13-14)

Figure 7 (15-16)

Notating the transformations

A less schematic representation than that given in Figure 6, would include the definition
of the orientation and type of transformation involved at each level of the sequence for
each motif. This is tantamount to their symbolic and quantitative expression in terms of

the notation actually employed in composing the sequence — i.e., EW movement
notation.
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The motifs A B C D have been defined as simultaneous appearances of pairs of the
elements a b ¢ d. For example, motif B is the combination of elements a and b, the first
and second parts of the source sequence shown and notated in Figure 4. The motif
appears (alone) in picture no. 7 in a specific orientation, as notated in Figure 8.

c] G
[0} 340 | 430 | 120 || [270
0 +#8 | -6 +4 {8
E [0] [0 /
E 25 25
{90] T10 | d20 | [80
E 70 70
() T40 (40)
a b
Figure 8

The transformation of B in picture no. 11, can be seen as the recreation of the elements
from scratch, in a new orientation, as notated in Figure 9.

G G

[0} 140 | 130 | l20 || [270
E 0 +8 | -6 +4 6 N

[0 © /
F 25 25

{80] T10 | 420 | [80
E 70 70

{120) §| T40 (160)

a b

Figure 9

This is equivalent to the rotation of the whole motif B through 120 degrees about its
origin. An equivalent of further rotation of the motif by the same amount as in picture
no. 14 would be notated as shown in Figure 10.
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G G
[0 140 | l30 | l20 | [270
0 +8 |6 |+4 |6 ofs
E [o] o /
E| 2 25
[90] T10 | l20 | [80
E 70 70
(240) || T40 (280)
a b
Figure 10

These three (original and two variants) would reveal threefold rotational symmetry.

If the medium had been one in which the display changes in actual time - as in a
videotape - this mode of notation would be the only way of expressing the movements
to be displayed. However, that is not the present case. The original shapes of the motifs
have already been fully defined, and these definitions have served as the basis for the
'macros’ A B C D. In this structured set of immobile pictures interrelated through
symmetry operations, it will therefore be more appropriate to notate them in a way that
reflects the symmetry type, while also (since we are dealing with real specific visual
forms) indicating what forms are involved, and how they are orientated. This
requirement is fulfilled by treating the paths (shapes) of the motifs as invariant forms,
and defining the movements of the total shape, which produce the transformation. For
example, in the case of motif B the three states of the motif can be adequately indicated
as shown in Figure 11.

(n = ()
1=40°
B |[© T T(6)

Figure 11

The positional series in Figure 12 expresses the whole sequence of rotational
symmetries, by indicating the positions of the appearances of the motifs; and also which
of the modified motifs 'survive' in each picture. (Note that in the end all of them
survive - in the sense that they all reappear in each group.)
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This constitutes a new - third - level of operation: movements of the invariant forms -
entire motifs that have already been defined as 'frozen' or 'fossilized' traceforms - paths
of movement generated by the movements of a curve, the shape of which was itself
previously defined as a path of movement.

Similarly, in Figure 13, the transformation of motifs by reflective symmetry can be
expressed as the rotation through 180 degrees (‘flipping’), of the invariant forms (motifs)
about specified axes lying in the picture plane.
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Figure 13
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Here again there is explicit indication of which transformations survive in each picture.

We have now explained how it is possible to give in 'EW notation a fully detailed
account of a structured sequence of 16 pictures that includes the definition of generating
links, the generation of elements and motifs, and the full deployment of successively
transformed combinations of those motifs, including a representation of the detailed
operation of the two symmetry types employed in this sequence.

The last picture (16) manifests the total rotational symmetry towards which the second
half of the sequence tends throughout its intermediate stages. This tendency is the mode
of articulation that connects the parts of the sequence that include pictures 7-16. In the
reflective transformations, there is complete symmetry between pairs of motifs at every
stage. The successive elimination of these symmetries down to the isolated
asymmetrical motifs in pictures 7-10, is the mode of articulation - or rather, of
separation - of the parts of the sequence that include pictures 1 to 10. Furthermore, the
overall connecting principle which gives the sequence its unified structure is that of
reduction followed by accumulation. (In its accumulative aspect, the sequence has
symmetry about the central group.)

Besides movement notation, we have for the purpose of this explanatory article also
used typographical representations of the overall structure in explaining the successive
grouping and recombination of the motifs, and in a 'map' of the evolution of the motifs
and their recombination in transformations, resulting in increasing complexity as the
distance from the middle group of pictures increases. These schemes are
comprehensible with a minimum of verbal explanation. While they are not detailed
notations, they make sense because their frame of reference is the unambiguous detailed
specification fully formulated in terms of concepts of EW notation. Different selections
from these schematic representations would yield descriptions of varying generality -
some so simple that they could be given in words and commonly accepted symbols such
as ¢ and Cs, as was done in the penultimate paragraph of the section entitled 'The
picture sequence...'

Ultimately, only the pictures themselves can give a proper visual realization of the
structure, for no description or symbolic representation can fully convey the landscapes
of visual experience.
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INTRODUCTION

Although the last resort of the scoundrel academic is to fall back on the truism that we
all reserve the right to be speculative, there still remain some intellectual projects that
cannot rid themselves of the whiff of impertinence, and I have to admit that this is one
of them. I believe that the general idea was that an arts specialist should offer some
personal reflections on the notion of symmetry, and there is sufficient provenance for a
line of argument to be developed, perhaps centred largely on the decorative arts and the
aesthetics of pattern recognition, with genuflections in the direction of art nouveau
tiling, traditional wall paper, the spiritual geometry of islamic art and architecture,
together with more recent icons coming out of chaos theory, including the ubiquitous
Mandelbrot fractals.

But the more I contemplated this agenda, the less it seemed to capture what I actually
wanted to say. In part this was because the approach seemed trapped in the second of
the classical double definition of symmetry, which juxtaposes a mathematical version
(that an expression is symmetrical if it remains merely reflected in the face of operations
that might otherwise reconfigure it) with an aesthetic version that adjudicates symmetry
to be a matter of pleasing internal balance and proportion. The first kind of symmetry
derives its power from its use in explanation within fields where the data is capable of
mathematical manipulation such as Biology or Linguistics, with the added practical
advantage that design processes in fields exhibiting symmetry, such as Engineering and
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Architecture, can and do make use of repetitive iteration (CAD being the paradigm
example). The second, as usually formulated, has until recently been little more than a
footnote in aesthetic history, although revived somewhat under the influence of the kind
of cognitive psychology that has concerned itself with pattern recognition. To put
matters this way is already to have formulated the central question as one of what kind
of order is to be found in art, moving on to a consideration of the balance it draws
between order and disorder, symmetry and symmetry-breaking. And it is increasingly
recognised (as for example by Ian Stewart and Martin Golubitsky 1992) that nature
itself, so often the object of contemplation in art, exhibits deeply symmetrical inner
structures not least living things through DNA, although the actual processes by which
living things come into being seem to prefer right-hand spirals. The expectation, then, is
that the aesthetics (symmetries and partial symmetries constructed in the eye of the
beholder and perceived pleasurably by the audience) bears some kind of (symmetrical?)
relationship with the real order that can be considered as an attribute of the data.

O

Sydney Parkinson. Portrait of a New Zealand man, The Head of a New Zealander, engraving after
pen and wash, (c. 1769). British Museum Add. MS, Parkinson, in Hawkesworth, Voyages (1773), pl. 13.
23920.54a.

But this line of argument, although part of what I want to say, also does not seem quite
good enough. As reflected in the title, I want to take my speculations beyond the idea of
symmetry and its application across the discipline, and in the directions determined by a
fuzzy' and ili-formed project that seeks to see ideas themselves as stable repetitive
structures carrying their own tendency towards soft symmetry. Jan Tent's paper (1993)

4
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makes its own claims to ”soft symmetry”, so perhaps the kind of symmetry I have in
mind should be seen as liquid rather than soft, with the equivalences on view much
more fluid but nonetheless ordered according to their own principles of
commensurateness.

The structure of this paper begins with some trivial examples and moves up to more
complex ones, finally taking a sustained look at negotiated cultural meanings as they
inform the dramatic pageants that make up the English medieval mystery cycle,
particularly the impact on its complex dramatic form of the doctrine of equivalence
known as typological theology.

MIRROR MIRROR ON THE WALL

Mirrors give the erroneous impression that they pull their trick of reversal only on a
right/left basis but not on a top/bottom one, sbmething to do with the vertical axis of
symmetry of the human body. But when I lie down horizontally in front of my mirror,
the guy looking back at me leans on the wrong elbow. On a similar theme, when giving
this paper at the Symmetry and Structure among the Disciplines Conference 1 wore a
sulu made up of the Welsh flag, which features a dragon rampant.

Since the dye goes right through the flag, one does
not need a mirror to reverse it; it could simply be
worn back to front. Does it matter what side the
dragon is coming from? It certainly would in the
theatre where the symbolism of sinister/dextra adds a
dimension (like colour in symmetrical tiling) that
reduces perceived symmetry by introducing a novel
category of non-equivalence. There is only one “right
way” for the Welsh flag.

In passing, it is more usual for dragons in the
decorative arts to be symmetrically two-headed.
Figures 2 and 3 offer two pleasing examples, the first
displaying bilateral symmetry, but the second only
rotational symmetry.

Figure 1: Flag-as-sulu
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Figures 2 and 3: Symmetrical dragon ornaments

CROWNS, HEARTS, HANDS

The claddyr ring is a ring of traditional design associated with County Galway on the
west coast of Ireland. No matter that I first acquired this particular one to confuse
deliberately the semiotic signals during my sojourn as Professor of Education at the
University of Ulster (claddyr rings are supposed to be worn only by Catholics); our



BISHOPS OF OPPOSITE COLOURS 337

present interest is in its design. Rings as objects in their most basic shapes exhibit not
only a symmetry but a symbolism of shape, suggesting a wholeness and completeness in
their sparse roundedness (topological doughnuts, all) but also carrying in the way they
are worn on fingers a symbolism owing much to what we might delicately label
physiological analogies ("Clarissa’s ring” in Shakespeare's The Merchant of Venice is
clearly handled with such reverberations in mind). But the claddyr ring breaks its
symmetry by carrying further emblems on one segment of its circle, in some sense not
unlike the bicycle wheel, which allows its rotational symmetry to be broken by a valve.
What the claddyrness of the claddyr ring depicts can be variously interpreted, linking
together as it does a pair of hands cradling a heart, topped by a crown. Some say it
represents the Sacred Heart of Jesus, others that it celebrates the commanding authority
of the heart's affections, but there are two other features that command attention. Firstly,
that it is reversible and can be worn in two ways; with either the crown or the
unprotected heart exposed to the top of the finger; and in Ireland this bifurcation in
orientation is deployed culturally to indicate commitment (marriage, engagement or
”going steady”) or emotional availability. Secondly, and arising out of this possibility,
that it is much more aesthetically interesting than a plain ring, precisely because of its
symmetry-breaking, whilst retaining bilateral symmetry around a single axis (hearts,
hands and crowns echoing the symmetry in their own way).

Figure 4: The "Claddyr” ring

THE RORSCHACH BLOT

First year university students studying the quasi-science of Psychology can scarcely
avoid coming across the most famous of the projective psychodiagnostic tests, the so-
called Rorschach Inkblot (Figure 5).

As Bootzin, R., Acocella, J., and Alloy, L. (1993) point out, the validity of the test is
based on the assumption that unconscious motivations can be drawn out by asking
subjects to “interpret” ambiguous stimuli into which they will be disposed to read
meaning, first through free association but increasingly via a kind of psychological
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interrogation. The Inkblot cards vary considerably in detail, but they have one feature in
common, displaying bilateral symmetry, almost as though they had been produced by
folding a piece of paper to mirror-image an inkblot. It is this bilateral symmetry, of
course, that anthropomorphises the image and trades on the (according to Jonathan
Miller probably wired-in?) capacity of the human brain from infancy to recognise faces
and their myriad of expressions and subliminal messages. For similar reasons attributed
meanings may also be taken in the direction of flowers or insects as one’s mood or psy-
che might determine. This theme (believing is seeing) resulted in the strangely enduring
iconography of Diirer's misobserved rhinoceros. His "plated armour” image was copied
assiduously for nearly a century, including the anatomically mistaken dorsal horn®.

Figure 5: Rorschach inkblot
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PIED BEAUTY

Perhaps beauty has little to do with symmetry after all. The Jesuit poet Gerard Manley
Hopkins is usually perceived as torn between his ascetic calling to the "God beyond
change” who (paradoxically) "fathers” everything forth, and his overwhelming aesthetic
engagement with the ““dangerous" earthly beauty of an ever-shifting and changing
creation itself. His poem Pied Beauty* glorifies God for His “dappled things”, valuing
the transient, the ephemeral and the fleeting ("landscape, plotted and pierced, fold,
fallow and plough / And all trades, their gear and tackle and trim / All things counter,
original, spare, strange / Whatever is fickle, freckled (who knows how)....”). There is
perhaps an echo here of the sort of thing James Gleick talks about in Chaos (1987)
when he describes how the reconstituted geometers, persuaded to look afresh at things

like clouds, eroded landscapes and turbulence, have been digging up new words to
describe whole families of shapes, words like “jagged”, “tangled”, ’fractured”,
“twisted” and “splintered”. If Gerard Manley Hopkins were alive today he might even
have become a topologist.
PRI . -

Figure 6: Monet's Grain Stacks at Giverny

The spirit of Pied Beauty can be discerned in fin-de-siecle French Impressionist
painting, particularly the work of Monet in his legendary concern for the ambience of
light, subtle colouring and atmosphere that might be snatched from fleeting moments of
time. Yet Monet became pre-occupied with “series paintings” (of the facade and Tour
d'Albane of Rouen Cathedral, the grain stacks at Giverny etc.). For the grain stack
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paintings, he often stood in exactly the same position rendering the stacks under
different lighting conditions and different seasons of the year ("I have been grinding
away, bent on a series of different effects, but this time of the year the sun goes down so
quickly I can't keep up with it”) Collectively they show an unnerving balance between
periodicity and what Hopkins would have called their unique idiosyncratic “inscape’.

MORAL SYMMETRY

Ideas of appropriateness and balance often outcrop in areas of life where to assert a
mathematical model of commensurateness would appear contrived. But take the lex
taliosis, the famous Hebrew doctrine of appropriateness in punishment; the eye for the
eye and the tooth for the tooth is symmetrical in its patterning, with retaliation aping
offence, although the notion of fittingness has at times in our cultural history been
subjected to grim excess, as when the adulterers among the damned in San Gimigniano
Cathedral's Last Judgement have sadomasochistic retributions enacted on their
offending parts.

Figure 7: Last Judgement in San Gimigniano cathedral
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The Greeks, of course, saw matters differently, imagining a moral universe with some
asymmetrical unfairness, precisely because the gods were held to be capricious. The
symmetry was broken when the victim's number came up, as when a roulette wheel
loses its rotational symmetry at the point a ball drops into a slot.

FROM MIMESIS TO ”THIS WOODEN O”

Any discussion of symmetry in the arts has to find a way of handling the classical
doctrine of mimesis. According to Plato, all art is mimetic, either striving for true
likeness (the “eikon”) or representing from a viewpoint (the “phantasma”). But as
Monroe Beardsley (1966) points out, this doctrine in its strongest version implies deep
symmetries central to what it is to understand anything, thus linking the idea of
symmetry with the symmetry of ideas. ("Not only are objects imitated by pictures of
things, but the essence of things is imitated by names, reality by thought, eternity by
time.”) These are ideas we will take to English medieval religious drama, but
meanwhile will jump ahead of ourselves and consider Shakespeare's Globe and Swan
theatres.

At the heart of the architecture of the Globe Theatre lay both a conceit and an
ambiguity. The conceit punned on the physical shape of the theatre's structure, a
”wooden O™ that held in suspension two extreme versions, standing both for the world
and nothing, the pun itself echoing the hyperbole by which a stage could name itself
after a planet or alternatively understate itself as zero, nothing, zilch, the figure naught.
And of course in some symbolic sense both were true and the tension between them was
productive, a kind of negative symmetry of opposites. Paradox is not dissimilar,
although it is important to remind ourselves that its structure depends on some doxa
being considered para.

The ambiguity relates to the Elizabethan theatre's capacity to accommodate shifts in
mise-en-scene between outside and inside locations. Historically, this flexibility has
been explained by people like S. L. Bethell (1948) as having something to do with stage
conventions, in particular that scene-setting speeches are allowed to colonise neutral
space; but equal attention might well be paid to the physical ambiguities of theatre
architecture. The facade of the tiring house lends itself to being treated as the outside of
a building such as Macbeth's castle with its attributed “friezes and jutties”.
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Banguo

This guest of summer,

The temple-haunting martlet, does approve

By his loved mansionary that heaven's breath
Smells wooingly here; no jutty, frieze,

Buttress, nor coign of vantage, but this bird

Hath made his pendant bed and procreant cradle...®
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Figure 8: Johannes de Witt's Sketch of The Swan Theatre
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When seen in relation to the cube-shaped extension that came out from the tiring house
above the stage itself (pillars supporting a square roof), sufficient visual ambiguity
existed to support the alternative interpretation that the facade represented an inside
wall. The fact that the ceiling of the extension was called "the heavens” and painted
with stars rendered it also capable of inside/outside dichotomous interpretation, and the
plays make consistent use of the implicit optical illusion.

A formal distillation of the same set of ideas can be found in those two-dimensional
cube-suggesting symmetrical tiling patterns that retain an optical reversibility as images
interpreted in three dimensions, depending on which face or edge is held to be nearest to
the eye’. The addition of tone or colour can be made substantially to reduce the
ambiguity since our brains are more used to interpreting objects lighted from above.

SYLLOGISTIC LOGIC AND METAPHOR

In the mathematical expression x =y, it is unproblematical to assert equality at either
side of the equals sign since its ordinary meaning is not to compare but equate. One
consequence, perhaps the cause, of the symmetrical form of the expression is that it can
be written as y = x without affecting its values. Yet ordinary language statements that
appear superficially to have an identical configuration carry a particular problem
associated with the verb ”to be” in that there is often a difference that the traditional
formal logic identifies as pertaining to the implied distribution of the terms. Thus
“apples are fruit” can be seen as a shorthand version of the longer sentence, “all apples
are some fruit”, a feature sufficient to make the sentence asymmetric although perhaps
retaining a soft bilateral symmetry setting it aside from sentences using transitive verbs,
as in ”Sitiveni castigated the sleaze-bag”.

Syllogistic logic is a pattern of inference (as opposed to truth) by which it is possible to
assert some conclusion deduced from two premises. Let us stick with the most famous
example:

All men are mortal
Socrates is a man
Therefore Socrates is mortal

Leaving aside that inference is in some sense itself a symmetrical system, consisting
entirely of transformations preserving “truth value” equivalence, it is interesting to note
that the two premises that lead to the conclusion are technically interchangeable, whilst
at the same time possessing a natural order, the major preceding the minor. One of the
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rules of syllogistic inference is that there can be no increase in the distribution of a term
between the premises and the conclusion®,

When we move on to the world of the arts, the caveats we noticed in relation to
propositional logic are present in spades, since simile and metaphor are not only seeking
to assert equivalence and commensurateness in the teeth of differences but are often far-
fetched, extremely in the deployment of the metaphysical conceit (“Far-fetched, but
worth the carriage,” observed Dr Johnson dryly). A typical example might be John
Donne's The Flea which seeks to seduce a mistress with the thought that since the insect
has bitten both of them it has pre-sanctified their union in the mixing of blood, as well
as being emblematic of the three-in-one Holy Trinity. Nice one, John.

Nevertheless, metaphorical language is capable of carrying sustained parallels of great
emotional and intellectual appeal and it would be parsimonious to exclude this area
from any discussion of soft symmetry. When parallels of this kind are sustained in
narrative the resulting framework is often what we call allegory®, which is a cultural
trick whereby a story is allowed to carry a non-literal message in relation to which it
stands as a sign. As ever, the reciprocity between a sign and what it signifies is at one
level a symmetrical one, despite the polymorphous perversity of signifiers.

More than perhaps we realise, our interpretations of experience are ultimately dependent
on making comparisons, asserting sameness, and using preferred and proven
configurations as the basis on which to assimilate anything new. It is small wonder that
there is a natural history of metaphors that take them from their first beginnings as
arresting novel comparisons (e.g., why not argue a dramaturgy of everyday life?) to
their perception as well-worn literal truth (e.g., role theory as put forward in standard
structuralist/functionalist sociology textbooks).

Stanley Fish (1980) offers a brilliant exposition of a sermon by Lancelot Andrewes,
dating from 16™ April 1620. Fish sees the sermon as an example of what Roland
Barthes calls "replete literature”. Andrewes' sermon deals with the episode when Mary
Magdalen encounters the Risen Christ outside the empty tomb and “supposes Him to be
the gardener”. But Mary is cleared of error, since her mistake concealed a deeper truth
(Jesus is the second Adam, can weed the tares of sin from the human heart etc.). Fish
realises he is dealing with “structural homiletics”, a world of mutual affirmation in
which the available meanings are seen as a vast mesh of fitnesses, agreements and
correspondences “within a storehouse of equivalent and interchangeable meanings”.
The narrative of the sermon, as of the Gospel itself, posits a world in which it is not
possible to make a mistake as every surface feature carries its load-bearing share of the
deeper truths that it reflects in its internal symmetries.
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Later in this paper I will be taking a look at extended metaphors, symbolic associations
and allegories as they proliferate in English medieval religious drama. But by way of
foreshadowing, it may be useful to note three ways in which the dramatic genres leading
up to Shakespeare and the English Renaissance echoed the basic configurations of
bilateral, rotational and periodical symmetry. These parallels can be seen respectively in
the conventions of the sub-plot (mirror-imaging the main plot)®, the reflected antitheses
and double allusions of irony" (itself always dependent on comparisons around a twist)
and thematic repetition at the level of plot”. It was not for nothing that A. P. Rossiter
(1950) described the Wakefield Master, responsible famously for the “"mock nativity” in
the Towneley Secunda Pastorum, as having a peculiar twist to his vision”.

THE GAME OF CHESS

It has long been realised that certain repetitive tiling patterns lose some of their
geometric symmetries by the addition of colour, a consequence that underlies much of
the complex artistic punning of M. C. Escher®. A deceptively simple example is the
ordinary chess board, which allows alternate squares to be coloured black or white.
Since either a black or a white square will appear at the bottom right hand corner, and
the rules of chess require it to be a white, the chess board in relation to either of the
players evidences rotational symmetry only at 180 degrees, with 90 and 270 precluded
by the colouring. Interestingly, the inclusion of colour means that the chess board has
bilateral symmetry only around two axis, the black and white long diagonals.

When we add the pieces in the opening position ("the array”) there is again a tantalising
near symmetry, interestingly broken in three ways, by the colouring of the pieces
(raising again M. C. Escher's question of the extent to which colour matters), by the
disruption of the pattern on either side of the line between the d and e files by the non-
equivalence of the King and Queen, and in actual play by the alternation of moves so
that any tendency towards symmetry in opening theory is a matter of Black echoing to
the extent that is possible White's previous move.

Chess players are, of course, deeply aware of the impact of these imperfect symmetries
and many have settled preferences either for balanced or unbalanced positions. Several
defences are sufficiently reflective of the opponent's opening moves to be labelled
”symmetrical”, for example the symmetrical defence in the English opening and the
Austrian defence in the Queen's Gambit Declined™. It is in the endgame, however, that a
formal symmetry, perhaps organised around the axis of the long diagonal, enters into
solutions, with the practical concomitant that one section of analysis will hold for its
symmetrical alternative. An interesting pure example was recently offered by John
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Nunn (1994)". The following diagrammed position involves a neat reciprocal zugzwang
through which White can force a win by Bishop to g2.

The only way for Black to avoid loss of the rook is by moving it either to c8 or a6, but
because of the symmetry of the position either analysis will hold for the other. If c8 then
the rook on f3 moves to f7 with discovered check. The Black king is forced to b8,
allowing the White rook to b7 forcing the king back to a8. The point becomes apparent
when White gently moves his king to h2 creating another reciprocal zugzwang. Black to
move must lose his rook to some discovered check. Although it is rare for chess to
achieve this level of symmetrical geometric precision, the aesthetic qualities of the
game are substantially linked to its subtle balancing of true, partial or broken
symmetries and it is these qualities that make the game so appealing. Like many games,
it also has the oppositional symmetry of zero sum since in any chess game there is one
point to be distributed between the players. A draw gives both half a point.
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Figure 9: Reciprocal zugzwang with symmetry

IMPLICIT BIOGRAPHY

The possibility of projective structuring is not confined to the Rorschach blot, as it is
increasingly seen as legitimate in literary criticism to plot an unconscious soft symmetry
between texts and lives. One fine example of this biographical criticism can be found in
Ellen Moers (1985) which develops the argument that Mary Shelley's Frankenstein is in
effect a mythological reworking of her tragic experiences of pregnancy and parturition'.
Mary Shelley's mother, Mary Wollstonecraft, died giving birth to her and she herself
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lost several babies. Frankenstein's creature (Frankenstein was the inventor and not, as
commonly supposed, the monster) was put together with bits of dead bodies gathered
from graves and charnel houses in a way clearly drawing on these experiences. My ex-
colleague Carolyn Steedman has been able to explicate the links with reference to
entries in Mary's diary"”. Clearly this kind of parallelism must remain imprecise at any
level of detail, but the principles of thematic commensurateness are utterly clear'®. As
ever in the Arts, we are dealing with reverberation and resonance rather than formal
geometric equivalence but there is a commonality of patterning nevertheless.

STRUCTURAL ANTHROPOLOGY

Already admitted into our consideration is the notion of the underlying patterns, and it is
one of the tenets of structuralism that when exhumed in particular contexts they can
display a fearful symmetry. Barbara Hardy has observed that narrative is a primary act
of mind, one of the absolutely basic ways of bringing order to the intractable
complexities of experience. One might expect narrative to reflect this unavoidable and
opaque human diversity. But one would be wrong! Hardy (1975) examines the
narratives of fiction not as unique aesthetic monads but as heightened versions of
common discourse, organised around stable thematic patterns (although clearly
exhibiting surface cultural variation). In the novel, the epic and the picaresque narrative
carry the largest burden in sustaining the template of the genre. And certainly in relation
to that range of narratives that we call myths, their historical subjection to the
interpretive approaches of a "structural anthropology” has led to the strong assertion
that it is possible to exhume a deep persistent underlying patterning. This approach has
been epitomised in the book by Claude-Levi Strauss (1963) that names the game,
Structural Anthropology. Readers preferring the more tough-minded definitions of
symmetry will warm to Levi-Strauss's analogy with mathematical expressions retaining
symmetry under transformations (”variants of one myth or several myths which appear
different from each other can be reduced to many stages of the same group of
transformations as can their corresponding rituals of different people”). An interesting
litmus question is whether this insight does or does not appear to be counter-intuitive.

The robustness of the patterning leads Levi-Strauss to assert that the evidence shows
“relations of symmetry” between the rituals and myths of neighbouring people. This
example perhaps opens up a further dichotomy; elegance in explanation so often strikes
one as pleasing precisely because of its sparseness. As we should see later, eloquence in
the decorative arts paradoxically often depends more on complex elaboration and
variation, in short on symmetry-breaking as much as on symmetry.
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CLASSICAL AND ROMANTIC AESTHETICS

One set of ideas from which we might seek some of the answers is classical aesthetics,
pursuing some of the issues that Dénes Nagy raised in his introductory lecture "Why
Symmetry?” which are reflected in this volume. As Monroe Beardsley (1966) analysed,
Plato's answer to the question what kinds of things are both complex and beautiful saw
them as exhibiting ideal properties. Thus a temple was imbued with literal mathematical
qualities that guaranteed its aura of stillness and self-completedness. What was being
asserted was the underlying truth that metron (measure”) and symmetron
(”’proportion”) between them constitute beauty. Deformity is at heart lack of proportion.

But as ever these notions need to be modified with at least half a nod in the direction of
the mathematical models of perception wired-in to the human brain. The Parthenon's
famous optical illusion, with its pillars bulging slightly so as merely to look vertical
must occasion at least a mild diversion from the platonic argument. A modern version
of this digression would be the insistence that any decent aesthetics theory would have
proper regard for the mechanics of perception, most sharply framed in
neurophysiological terms. Talking as we are of symmetry, it is interesting to record the
rectangular geometry associated with the arrangement of rods and cones in the human
visual system, and to enquire in what precise ways it might determine perception of
shape.

But we need not, of course, allow ourselves to get trapped in a classical aesthetics. In
my own country, there was a time when neoclassic canons of taste, at least as far as
gardens and landscapes are concerned, shifted abruptly under the influence of that
collective cult of individualism and feeling that tends to be collected together under the
rubrics of romanticism. As Anthony Ashley the third Earl of Shaftesbury put it, the
“horrid graces of the wilderness” were now to be preferred to the mockery of princely
gardens”, gardens which sought to tame the rude promiscuity of nature by imposing
geometric order on it”. The new taste embraced the sublime as well as the picturesque
and led to paintings like those by Salvator Rosa and Claude of Lorraine, showing
humanity overwhelmed by brooding alpine cliffs, and having titles like Landscape with
Banditti. At the time taste was seen as detaching itself from mathematics and basing
itself on mood. There is evidence that this was a lens through which explorations of the
South Pacific were viewed and interpreted, as, for example, in Figure 10.

One of the really interesting things about chaos theory, as we shall see later, is that the
gnarled oaks are now once again seen, alongside cloud formations and ferny
undergrowth, as possessing their own soft symmetry.
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If we are to take on a single lesson into the rest of this paper, it is that in matters of taste
and aesthetics there is no such thing as a naive viewer. Any assertion as to why
symmetrical patterning may be perceived as pleasurable must cope not only with
alternative delimitations of what is symmetrical but must also allow itself to be
subsumed under cultural history®.

Figure 10: Augustus Earle, Waterfall in Australia

ISLAMIC ART

My former colleague Richard Yeomans (1993) recently analysed the abstract geometric
art of Islam as an abstract expression of its spiritual values, since as Titus Burckhardt
has observed, there is a strong rejection of devotional images in Islam. Particularly on
the Sufi side, Islam holds that the deepest truths cannot be put into words but must be
“manifest” in a uniquely abstract visual language, which subsumes under a spiritual
geometry everything from calligraphy to its uncluttered mosques?'.
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The resulting decorative art and architecture is unrelievedly abstract, based on a method
of mensuration and composition that predates the numerical decimal system in the 8"
century, probably at first making use of ropes with equidistant knots. As El-said and
Parman (1976) note, its ordering principle is that of mizan (balance or order) and
depends aesthetically on the systematic arrangement of repeat units in the overall
design.

Figures 11: The geometry of Islamic tiles
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Figures 11 show the design principles lying behind the two examples. The sheer
complexity of the architectural inventiveness never ceases to amaze. The squaring of the
circle, allowing a circular dome to cap a square plan, was achieved by Byzantine
architects in a way that spawned the complex honeycombed crystalline forms known as
squinches and the stalactite forms known as pendentives.

ERNST CASSIRER AND SUSAN LANGER:
FROM ”PHILOSOPHICAL ANTHROPOLOGY”
TO ”SYMBOLIC TRANSFORMATION”

The claim made in the introduction for the broad thrust of this paper was that it is
attempting to move outwards from a discussion of the idea of symmetry towards some
parallel notion of the repetitive patterning through which cultures seek to organise
experience, what I called by the hopefully evocative but doubtlessly slippery term ““the
symmetry of ideas”. It is necessary to lay down some basis on which this project might
be attempted, and I shall do so by a large scale borrowing of a set of insights first
proposed by Ernst Cassirer in his Philosopie der Symbolischen Formen. Cassirer has
been influential in showing us how we might see the arts alongside other preferred
explanations as aspects of human culture and his work has been built upon in particular
by Susan Langer and more recently by the cognitive psychologist Howard Gardner in
Art, Mind and Brain (1982).
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Figure 12: Patterning with beads
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The insight at the heart of Cassirer's work is his argument that human forms of intuition
(space, time etc.) and categories of understanding (substance, causality etc.) are
typically imposed on raw data to give it form rather than in any strict sense derive from
it. Once again this is an intellectual backwater, or perhaps frontwater, sensitively
summarised by Monroe Beardsley (op. cit.) who depicts Cassirer surveying evidence
from psychology, anthropology, and linguistics before coming to the far-reaching
conclusion that the great symbol systems or symbolic forms of world cultures (their
mythologies, their art forms, their scientific theories and explanations and their
religions) are not modelled on reality but actually seek to model it. If so, the purpose of
all the creativity of spirit that we see in these human endeavours is less a nomothetic
quest for underlying regularity than an idiographic imposition of interpretive schema of
our own invention. The "symmetry of ideas” that I hope to indicate is the product of the
coming together in cultures of the twin forces of human inventiveness, often rooted in
metaphor, and our preference for elaborating the patterns we already assert rather than
switching to new ones. We just thread the beads in different but depressingly
predictable ways.

Susan Langer (1942) in Philosophy in a New Key hints at the role played by symmetries
(essential meanings unaltered by symbolic transformations) in the world of the arts. If
tonal structures exhibit a close similarity to forms of feelings, music can be
conceptualised as a tonal analogue of the emotional life, presenting as it were a kind of
reflection of it with its essential configurations intact.

Towards the end of this paper I shall be taking a sustained look at English medieval
religious drama to test these insights in a reasonably well described setting.

HAGIOLOGY AND ICONOGRAPHY

There is a difficulty in arriving at an appropriate visual representation of a saint, with
perhaps a tendency to identify by some association with a symbolic object, like St
Catherine and her wheel. Representations need to be symbolically commensurate, not
with lives as lived, but with the often apocryphal and yet to be demythologised version
of them currently being peddled to succour the faithful. In the case of a “composite
saint” like Mary Magdelen, there is a kind of bilateral asymmetry around the twin poles
of her life-as-processed, taking in her traditional identification as the woman taken in
adultery” in St Matthew's Gospel and her subsequent apocryphal life as a wilderness
saint. She is also graphically identified by her assertive but touching act of homage to
Jesus before his death, smothering his feet with expensive ointment from an alabaster
box and drying them with her (often luxurious and auburn) hair. Her association with
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Christ's feet extends insistently into the iconography of the crucifixion, and one quite
delightful anonymous miniature from the Siena Pinacoteca depicts her quite
unmistakably as the patron saint of foot fetishists, crawling under the table to embrace
Jesus' feet at an otherwise sombre gathering in the house of Simon the Pharisee.

On the opposite polarity, Donatello's quite striking wooden Magdelena, centrepiece of
the 1987 Donatello et son Sui exhibition at Fort Belvedere, Florence, revealed an
anorexic Mary Magdelen with calf-length hair like some wilderness animal. She appears
tense and angular, ravaged with grief, her suffering seemingly void of any comfort or
faith, confronting us with what to all intents and purposes is a gaunt stare*.

AMBROGIO LORENZETTI'S ANNUNCIATION AND ITS
ARCHITECTURAL SETTING

Figure 13: The Annunciation by Ambrogio Lorenzetti
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Ambrogio Lorenzetti's reputation rests most securely on the cycle of frescoes of the
Allegories and Effects of Good and Bad Government painted towards the end of the first
half of the 14th century in the Sala dei Novae of the Palazzo Pubblico in Siena, but my
own favourite piece is his Annunciation in the Pinacoteca. The event, celebrating the
moment when the Virgin Mary is told she is with child by the visiting Angel, is
variously depicted in art, but at best with a subtlety of reciprocation, most usually
expressed as a delicate balance between deference and modesty. Here, however, there is
an unusual serenity in the acceptance and an evident easy complicity between the
strikingly similar figures in spite of their segregated conventional gestures. But the
unusual mutuality of the encounter is achieved architecturally by placing both figures
under identical trefoil arches symbolising the eternal Holy Trinity (even as the Son is
about to be born). The symmetry of the arches is continued in the expansive ornamental
pavement, which has a strong repetitive tiling pattern. Its perspective lines vanish
towards a single point, although arrested by the abstract gold background that gives the
picture its jewel-like gloss. Interestingly, this application of the rules of Renaissance
perspective would not have been experienced as symmetry-breaking; it was simply
understood that this is how symmetrical patterns appear when not viewed from above.
What the formal tiles contribute to the painting, along with the church-like architecture,
is an overwhelming sense of rightness and order, enhanced by the slight all-too-human
hint in Mary's expression that perhaps she knows already and is quietly confident®.

THE AESTHETICS OF CHAOS

From quintessential order it is appropriate that we next turn to chaos. It is perhaps best
to start with an example.

James Gleik (1987) offers a nice account in Chaos of the first application of Cantor sets
to the distribution to transmission noises. In all systems, “message” is infinitely
preferable to "noise”, but the standard way of thinking about noise, although
recognising its tendency to come in clusters, was that the effects were preity much
random with the worst examples mythologically attributed to somebody somewhere
being careless with a screwdriver. But Benoit Mandelbrot brought intellectual order to
the noises by seeing them as a Cantor set over time (a Cantor set is a representation
produced by removing the middle third of a block, then the middle third of each section
etc., thus producing a pattern like the famous rough but robust fractal model of the
Eng;lish coastline, identical on every scale)*. In passing, self-similarity across scales can
be proposed as a novel form of “Russian doll” soft symmetry with an aesthetic frisson
of its own which from time to time has informed certain kinds of architecture, although
the opposite effect is more common in which a large scale symmetry is subtly
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undermined at the level of detail (e.g., twelve consecutive identical architectural niches
occupied by twelve distinctively individualised apostles).

Fractals occupy a world poised surprisingly easily between the realms of the arts and the
sciences. Peitgen and Richter's The Beauty of Fractals is clearly premised on
Mandelbrot's claim that fractals can at one level be read as novel anti-minimalist art,
albeit the (accidental?) by-product of dynamic systems, merely offering pictorial
visualisation of the encoded mathematical information. But through an act of radical
political appropriation they have been taken over by the cyberpunk sub-culture and
turned into cyberpunk mandalas by New Age hallucinogenic acidheads ("Just like the
inside of my head, man”). The video makers Strange Attractions recently produced a
four-minute video, Where No Penguins Fly based on a colour-cycled Mandelbrot set.
Unsurprisingly, it is now available as a screen saver.
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Figure 14: The Mandelbrot set at various scales
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One of the shifts in taste associated with fractal aesthetics, is its implicit endorsement of
an architecture rich in every scale. Gleick (1987) infers from Mandelbrot's schema an
antithesis to the architecture of the Bauhaus as the epitome of Euclidean sensibility,
“spare, sparse, orderly, linear, reductionist, geometric”. By contrast the Mandelbrot set
(Figure 14) is the most complex of all objects with its “thorns, spirals, filaments,
hanging molecules on God's personal vine”. Amazingly, this deep recursive swirling
geometry of almost infinite complexity comes, like Creation itself, out of what seems in
context so little; the full set can be transmitted using only a few dozen characters of
code.

COMPUTER-GENERATED IMAGES:
FROM THE UTAH TEAPOT TO VIRTUAL REALITY

One of the axioms of computer-generated artwork within the quasi photo-realistic mode
is that it is based on attempts to replicate mathematically optical phenomena arising
from predictable relationships between lights, surfaces and reflections. The results have
a fashionable plastic, shiny, almost surrealist look, as one would expect from observing
algorithms seeking to arrange coloured pixels. As Jane Prophet (1994) suggests, the
early pictorial efforts (like the Volkswagen Beetle or the ubiquitous Utah teapot) did not
merely establish developmental norms but acquired cult status. Since a Utah teapot is
for all practical purposes a data-base, it can be manipulated to appear with a variety of
reflective surfaces, from any angle, and under any light conditions, rather like a Monet
series painting. The computerised data-base was the more simple to construct because
of the partial symmetries characterising the original object.

Figure 15: Image of the Utah teapot
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It is in VR (virtual reality systems) that emerging computer graphics applications are
seeking an experiential symmetry between genuine and simulated happenings, although
?virtual reality” is currently a bit misleading, not much more than a manufacturer's
hype. But beyond flight simulators for pilot training and the opportunity for CAD
architects to walk around inside simulated buildings as if they were real, lie complex
problems to do with intellectual property rights (sampling is not coterminous with
plagiarism), morality (cybersex will not remain confined to Lawnmower Man, and the
technology is neutral before the question of whether your partner might be a distant
lover or a piece of software that has passed the Turing test® and ontology (a concern for
truth requires that we can tell the difference)®. Clearly, these issues place mimesis at its
problematic outer edge.

Figure 16: Lulu by Pekka Tolomen, 1992. A computer-generated sex object. The sexual fanatics of hudreds of
men (transcribed from pornographic literature and interviews) have been programmed into the system of this
program

TYPOLOGICAL THEOLOGY AND FIGURAL REALITY IN THE
MEDIEVAL MYSTERY PLAY

‘We now take these ideas to the sustained example of English medieval religious drama.
In spite of its relative unfamiliarity, it exemplifies richly the capacity of developed art
forms deploying meta-narratives (in this case rooted in Christian theology) to evolve
towards a metaphorical structure of elaborated resonances and equivalences, exactly in
the spirit of Stanley Fish's earlier comment on the replete literature of the sermon. A
more accessible example might have been to explore the thematic echoes and doctrines
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of “correspondence” lying behind what EM.W. Tillyard described as an “Elizabethan
world picture” ("Untune that string, and see what discord follows”), but the medieval
mystery play has the advantage of offering stronger links between the drama and the
iconography. What is at stake, in Cassirer's terms, is the human imaginative capacity to
invent order and structure. Commensurateness is in the eye of the beholder.

Figure 17: Animated Coco Cola bears

There are four extant texts of English mystery plays, dating from the 15™ century,
although a continuous tradition began earlier. Cycles have survived from Chester, York,
Towneley (Wakefield) and from an unidentified N-town, probably an itinerant cycle
travelling at of Bury St Edmunds. Like Gothic cathedrals, the mystery cycles evidence
layers of accretions, alterations, excisions and revisions. Mystery plays were street
plays, cyclic verse dramas each containing up to forty-six individual plays, and
performed under the sponsorship of the medieval craft guilds which were at that time
still under the hegemony of the medieval church. In performance they were distinctly
”stagey”, employing props, machines, traps, tricks, dummy bodies, live animals and
exploding furnaces. Craft pride allowed an amusing allocation of the Chester Deluge to
the “drawers of water from the River Dee” and (more audaciously) gave the Crucifixion
at York to the nail-makers and ironmongers, turning the sacred nails into commendable
craft objects ("large and long”). Although the Feast of Corpus Christi, with which the
plays were associated, lies outside the liturgical calendar as such, each in its own way
reflects the liturgical year with many individual pageants arranged around the events of
Christmas and Easter.
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Each cycle of plays tells the story of man from Creation to the Last Judgement, a
schema that has been described as “making War and Peace thin and Paradise Lost
parochial”. From the point of view of the present argument, it is important to stress that
each cycle was written under the arch of scholasticism, in the spirit of St Augustine's
Theatrum Mundi which quite literally treats history as if it were a play written by God.
The critic V. A. Kolve (1986) brought to the plays Northrop Frye's abiding agenda, the
quest for the so-called “generic features” that might make the genre stable. Kolve noted
that the cycles appear to have been written to a patristic framework, heavily dependent
on the teaching of the church fathers®. Indeed, Rosemary Woolf (1986) has argued that
the patristic tradition of the church was decisive in choosing episodes, and that it is
possible to assert an irreducible core including Adam and Eve, Noah, Abraham and
Isaac, The Shepherd Plays, Herod, The Birth of Jesus, The Temptation in the
Wilderness, Christ before Pilate, The Crucifixion, The Harrowing of Hell, and The Last
Judgement.

The Crucifixion is sometimes treated with a kind of grim irony, sometimes with an
audacious wit. The Towneley Jesus is ”"done on the rood, tugged, lugged, all-too-torn
with traiters”, but the cross is also a horse with a wooden saddle, and Jesus depicted
daringly as a “jouster” in a tournament. The torturers deliberately mis-drill the holes in
the cross piece, requiring Jesus to be stretched with ropes. Emblematically His
widespread arms embrace all humanity, but the torturers fail to decode accurately the
iconographic symbolism (”Short-armed is He”).

Underpinning the use of Old Testament material is an elaborate set of ideas known as
“typological theology”, which asserts a (soft) symmetrical doctrine of equivalence
linking types with their antitypes and developing thematic reverberation at every level
(rather like Mary Magdalen being cleared of error in supposing Jesus to be the
gardener).

The effect is partly achieved through a figurative” non-periodic view of time. Although
rooted in medieval life, the plays have in common a juxtaposition of narrative time (the
sequence of the plot), contemporary time (medieval England) and figurative time (the
non-time of the Divine Plan). It is in this last framework that the fubula can best be
understood, although exemplified at the other levels. Erich Auerbach's defining work
Mimesis (1957), important to the argument I am trying to develop here, has this to say
about figurative time:

An occurrence on earth not only signifies itself, but others that it predicts or
confirms. The link is oneness in the Divine Plan.



360 D. JENKINS

Both the theology and the texts are elaborated to resonate with a particular kind of
thematic repetition. As well as the deployment of type and antitype, as in the Abraham
and Isaac play”, another underpinning theological concept is the periodic” doctrine of
recapitulatio, a schema which demands that Christ re-iterates Adam, restoring by
repetition. Recapitulatio avoids the worst crudities of a “barter” theory of the
redemption by emphasising the continuity of God's providence. Something of its flavour
is caught in the iconography of the period, so often a bridge between the theology and
the drama. The Holkham Bible Picture Book uses emblematically the “pelican in piety”,
the bird pecking its breast to succour its young with little fountains of blood. The strict
allusion is to Psalm 101 ("I am a pelican in the wilderness™) but the fabula references
Jesus, justifying the usual non-literal “placement” of the bird's nest on the holy rood
tree, itself often sprouting foliage. (The dead tree of the second Adam brings life, while
the live tree of the first Adam brought only death). But in the “Fruit Forbidden” of the
Holkham Bible Picture Book the pelican tops Eden's tree. Only to the uninitiated would
this be an inappropriate placing, since the trees have a mystical unity. (Indeed some of
the legends of the holy rood assert physical continuity, the rood growing from the pip of
Adam's apple). Such complex reverberations appear at time almost capable of
exponential growth. The Arundel Psalter has a "Tree of Life with Nicodemus” that
playfully turns him into spiritual fruit, referring back to the ”you must be born again”
episode. Similarly a phallic "Rod of Jesse”, perhaps the ultimate icon of a disinterested
autoeroticism, displays its arboreal genealogy of Jesus and manages to get in on the
symbolic act.

A number of important issues arise from the use in medieval drama of the doctrine of
recapitulatio and the invitation of typological and allegorical interpretation, all of which
were already part of the “mind set” of the contemporary believer. In the first place we
can dispose of the old accusation of “naive anachronism”, which must rank as one of the
least discerning misjudgements of all time. More interesting is the extent to which the
structure lends itself to the most Sophoclean of ironies in which the audience knows the
end from the beginning. Neat examples abound, as when Herod in The Slaughter of the
Innocents boasts "He will die on a spear” even as the audience references Longinus as
its bearer. A more tricksy issue in speculative poetic hands is what might be termed the
limits of typological decorum. A willingness to stretch the metaphor to embrace Rahab
the hospitable harlot as a type of Christ (her red hair like Christ's blood in Marlowe's
Dr. Faustus “streaming in the firmament”) must be somewhere near the outer edge, but
what about the “mock nativity” of the stolen sheep in Mak's wife's cradle in the
Wakefield Secunda Pastorum?
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Among the symmetries and correspondences on view is a rather daring version of moral
symmetry in the N-town cycle, which systematically develops the distinction between
”pious” and “malignant” fraudulence. The conflict between Jesus and Satan dominates
the cycle, but the characterisation is conceived of in a rather daring way, reflecting an
earlier classical aesthetic. Cornford (1914) distinguishes a traditional opposition
between the eiron (from which we get the word irony) and the alazon (who is brashly
overstated, a braggart in a Herod-the-Great kind of way). In the N-town Cycle Jesus is
the eiron, but his understatement is given a twist by the imposition on the plays of a
speculative theological framework, the so-called “deception of Satan” theory of
redemption. Satan has acquired mankind by malignant fraud and must be out-duped in
return. Patristic sources for this theme are suggestive, for example Gregory of Nyssa's
metaphor of the fish hook in The Great Catechetical Oration. Satan is tricked by the
humanity of Christ, but it is the divine Logos playing the line:

the deity was hidden under the veil of our nature, that, as is done by a greedy
fish, the hook of the deity might be gulped down along with the bait of the
flesh.

The equivalent in chess is the sealed move, known only to the player who has made it.
In the plays, the theme is worked through consistently in The Betrothal of Mary, The
Trial of Joseph and Mary ("By my father's soul here is great gyle!”), The Temptation in
the Wilderness (after which Satan declares, “His answers were marvellous. I knew not
his intention/whether God or man be he I can tell in no degree”), The Descent of the
Anima Christi into Hell and somewhat equivocally in an incomplete Last Judgement
play. But the fanciful theology surrounding pious and malignant fraudulence is most
fully developed in an exquisite Christ and the Doctors play in which the boy Christ
("twelve years old” through his mother but “everlasting” through his Father) turns the
temple episode into a theological set-piece. He explains the Logos as a Logos pediagos,
a divine teacher restoring knowledge in kind. A nice exchange occurs with one of the
doctors:

Doctor: What need was it for her to be wed
To a man of so great age
Lest that they might both go to bed
And keep the law of marriage?

Jesus:  To blynd the devil of his knowledge
And my birth from him to hide
That holy wedlock was a great stoppage
The devil in doubt to do abide.
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Figure 18: The Last Judgement from the Holkham Bible Picture Book
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Although, as Beardley (op. cit.) points out, there was not a strong interest in the Middle
Ages in constructing a distinctive theory of aesthetics, the arts (particularly drama and
iconography) were seen, beyond initial uncertainties, as sensuous aids to worship. In
both the theology and the staging of the N-town Cycle, the incarnation is itself treated as
a device producing an illusion, and the two forms of commentary intersect.

One promising strand linking classical aesthetics to the medieval era resides in
continuities that can be traced in an implicit theory of interpretation. The work of
Homer, as poet and seer, was increasingly held to be open to deep, but rather fanciful,
allegorical interpretations and increasingly perceived as carrying profound truths hidden
in symbol and allegory. Consider the peculiar problem posed to Christianity in having a
double set of texts. At its roughest, the dilemma of the hi-jacked Hebrew Scriptures
(turning them into the Christian Old Testament) was solved by giving to them the
treatment given to Homer, evolving styles of interpretation that transcend their literal or
received meanings. Understood in retrospect, in a Christian perspective, the secret truths
of the Old Testament reveal themselves through typological and allegorical forms of
exegesis. As in solving a good crossword clue, the truth once revealed as fitting a
symmetrical pattern of complex mutually supportive reverberations, could not have
been otherwise. Jonah's experience in the whale's belly in the mode “prefigures” the
Harrowing of Hell, an association offering the iconic leviathan hell-mouth to the
medieval stage. Such figurative interpretations were legitimised by St. Augustine in
terms of their capacity of facilitate spiritual growth. The ultimate inspiration for this
theory of interpretation was John Cassian's four levels of meaning to be found in the
scriptures — historical, typological, tropological and analogical®.

A medieval mystery cycle is thematically complex in its reverberations, involving in
another context what Douglas Hofstadter (1979) called a “nesting in recursive structures
and processes”, and involving not a few “tangled hierarchies and strange loops™'. Is
God a geometer?” ask Ian Stewart and Martin Golubitsky (op. cit., sub-title). In the
medieval drama, just to pick the Noah plays as offering one of a thousand reverberating
images, he is also the metaphorical as well as the literal boat builder, preoccupied with
measurements to be sure, but also one whose arc is also an arca — shrine, ship,
salvation, church and altar, all at one and the same time. There are no regular solids in
poetic geometry.
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REMARKS

1. There is increasing recognition recently of the beauty and usefulness of blurred ideas. See, for example,
Bart Kosco's Fuzzy Thinking (1993).

2. Suggested by Jonathan Miller in a series of (as yet unpublished) lectures on Looking in Art at the National
Gallery, London, April 1994 which linked art history and appreciation to models of perception.

3. Diirer's misobserved rhinoceros. Equally "anatomically mistaken” was Edward Budd's attempt to extend the
Rorschach techniques to the metabolically challenged. See Budd, E. "Rorschach assessment of the 'mon
living”, Journal of Polymorphous Perversity, Vol.9, No.1, Spring 1992, pp. 12-16.

4. There is a sustained attempt in the poems of Gerard Manley Hopkins to resolve what are ultimately tensions
between faith and experience. See for example Herbert Read, “"Creativity and spiritual tension” (1933) in
Bottrall, M. (editor) (1975).

5. See Donald McChesney, "The meaning of inscape” (1968) in Bottrall, M. (1975) op.cit..

6. See William Shakespeare, Macbeth, New Penguin Edition, pp. 67-68.

7. Similar ambiguities are taken advantage of in Francis Bacon's ”Screaming Pope” series, optical
ambivalences similar to those that underpin M. C. Escher's disturbing uphill waterflows.

8. My USP editor John Hosack dislikes this formulation since, according to Prior in the Encyclopaedia of
Philosophy (1967), the concept “distribution” in relation to terms is often ill-defined and too slippery to be
useful. But one cannot slough off one's youth that easily.

9. Allegory is probably a fundamental mode of thought in spite of its having thrived in its more elaborate
versions in particular cultural contexts. A paradigm example might be the parables of the Kingdom from the
Gospel according to St Matthew. See Northrop Fry (1957) Anatomy of Criticism, Princeton, N.J.

10. As in Shakespeare's King Lear where the Gloucester é)lot revivifies in terms of physical blindness the
thematic paradoxes of Lear's spiritual blindness ("I stumbled when I saw™).
11. Most empathycally in so-called Sophoclean irony, which adoms accident in the clothing of design.

e ”,

12. Famously in Samuel Becket's "periodic” Waiting for Godot, which is why it has been called a meditation
on the Catholic liturgy.

13. Ideas developed by Andreas Dress at the International Symmetry Conference and reflected in this volume.
Professor Dress was plenary speaker at the M. C. Escher: Art and Science Congress in Rome, 1985.

14. See Gary Kasparov and Raymond Keene, Batsford Chess Openings (1982). It is worth noting also that
David Hooper and Kenneth Whyld in The Oxford Companion to Chess (1984) treat symmetry in part as a
theme in composition, giving the example of a symmetrical model mate by Kaminer which won first prize in
the 1920 Shakhmaty tourney.

15. See John Nunn, Secrets of Pawnless Endgames (1995). The foregoing analysis follows David Norwood's
account in his Daily Telegraph review, “*The Nunn's story (on zugzwangs - when every move is a bad
move)".

16. See also "Female gothic” in Levine, G; and Knoepflmarcher, V. (eds.) The Endurance of Frankenstein:
Essays on Mary Shelley's Novel (1979). There is a “psychological” as well as a "political” gothic.

17. A relationship demonstrated with examples in a lecture by Carolyn Steedman in the Department of Arts
Education, University of Warwick, March 1991,

18. This kind of interpretation is seen as legitimate (almost as a challenge to the autonomy of the text) under
“reader response theory”, which asserts symmetry between the acts of writing and reading (decoding exactly
paralleling encoding). See Jane Tompkins (ed) (1980) Reader Response Criticism, and James Kinneary (1983)
"The relationship of the whole to the part in interpretation theory and the composing process”, Visible
Language XVII, 2.

19. See for example, Christopher Hussey's The Picturesque; Studies in a point of view (1927). There was an
attempt to link the landscapes of North Wales and the Lake District emotively and subjectively to sub-alpine
aesthetics, a kind of partially tamed version of Burke's sublime.

20. As most matters of format. My University of the South Pacific colleague Liz Todd was instrumental in
organising the 1993 Weaving exhibition at the Suva Museum and had developed an interest, from an
ethnomathematical perspective, on how traditional crafts carry implicit mathematical knowledge. Fijian
weaving exhibits complex patterns of partial and broken symmetries.

21. See also Hankin (1925), "The drawing of geometrical patterns in saracenic art” in Memoirs of the
Archaeological Survey of India, Calcutta, The basic grammar and vocabulary of the patterning is explored in
Albarn, K; Smith, J; Steele, S; and Walker, D. (1974).

22. Iam aware of remembering an analysis along these lines in a very perceptive quality newspaper review of
the exhibition, but unfortunately I do not have the reference. Certainly the account coloured my own viewing
of the exhibition.

23. For further exegesis, see Enzo Carli's Sienese Painting (1983) p.44.

24. James Gleick (1987) collects a number of specific areas into a general account of Chaos as an
interdisciplina;?' area exhibiting what the cultural anthropologist Clifford Geertz (1983) has called "blurred
genres”. See also Benoit Mandelbrot's The Fractal Geometry of Nature (1982), Peitgen and Richter's The
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Beauty of Fractals (1986) and Hans Lauwerier's Fractals (1991), all deahng with the visual beauty of
computer-generated images.

25. In the popular imagination, the Turing test is the ultimate criterion for admitting the arrival of "machines
that think”, in that their performance on sophisticated tasks cannot be distinguished from those of human
beings. The test is named after Alan Turing of Second World War ”Bletchey Hall” fame, a locale where chess
players and mathematicians were brought together as code-busting cryptographers. See George Atkinson,
Chess and Machine Intuition (1994). When cybersex passes the Turing test, the pawn's tust for promotion”
will have been fully satisfied.

26. These issues are nicely handled by Jane Prophet (1994) in Taste Teaching and The Utah Teapot: the Use
of Electronic Media in Art and Design Education. With regard to the apparent authenticity of the image, it is
mainly the un-bear-like social psychology of the Coco Cola bears (who are evidently both awed and puzzled
by the Northern Lights which they settle down to view as if in a theatre before taking their interval drinks) that
persuades us that they are of the digital species ursor sapiens, rather than true bears.

27. Although not particularly Elizabethan, comprising in many instance the commonplace speculations of
Renaissance humanism and cosmology. See E. M. W. Tillyard, (1943) The Elizabethan World Picture.

28. This quest for “generic” features might suggest strong thematic links with traditional Taz'iyeh plays,
dealing with the events surrounding the tragedy at Kerbela. See Peter Chelkowski (ed.) (1979) Taz'iyeh:
Ritual and Drama in Iran, New York, UP.

29. Rosemary Woolf's account of typological interpretation in the Abraham and Isaac episode is balanced by
that of Martin Stevens (1987) across the cycles as a whole, but with particular reference to N-town as the most
overly theological of the cycles.

30. See John Cassian's Collationes (XIV, 8, Migne, Vol. 49).

31. See Douglas Hofstadter, Godel, Escher, Bach: an Eternal Golden Braid (1979). This profoundly serious
and playful book 1s perhaps better reflected in its subtitle, ” A Metaphorical Fuge on Mind and Machines in the
Spirit of Lewis Carol”.
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Abstract: In recent years, mathematics educators have begun to call for reforms in
mathematics learning that emphasize open environments rather than the traditional
pedagogy of exposition and drill. This paper explores one example of an open learning
environment created by combining mathematics and design activities in a “mathematics
studio.” The paper looks at: (a) whether students can learn specific mathematics topics
in a studio environment, (b) whether learning in such an environment will change the
way students solve mathematical problems, and (c) whether learning in such an
environment will change students' attitude towards mathematics. Two iterations of the
mathematics studio experiment in a project at the MIT Media Laboratory known as
Escher's World suggest that: (a) students can learn about the mathematical concept of
symmetry in a studio learning environment, (b) students learn to use visual thinking to
solve mathematical problems in a studio learning environment, and (c) students develop
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a more positive attitude towards mathematics as a result of working in a studio learning
environment.

1 INTRODUCTION

The publication of the National Council of Teachers of Mathematics Standards in 1989
marked the emergence of a coherent reform movement in curriculm (NCTM 1989).
Instead of a pedagogy based on exposition by the teacher, reformers propose moving
from drill and practice to more open learning environments. They call for the
introducion of extended projects, group work, and discussions among students. In many
ways, the learning environment these reformers describe seems more similar to a studio
course in design or architecture, where students work on extended projects exploring
creative solutions to general problems, than to a traditional mathematics class. This
paper describes one such mathematics studio, and evaluates the success of this approach
in learning some mathematics concepts.

Specifically this paper addresses three aspects of mathematics learning:

» Content knowledge: Can students learn to understand a specific mathematics topic in
a design studio?

» Skill acquisition: Will learning in a design studio affect the way students solve
mathematics problems?

« Change in attitude: Will students feel differently about mathematics after learning
mathematics in a digital studio?

The results suggest that indeed a studio learning environment can be used effectively
and profitably in mathematics education.

2 SETTING

This paper reports results from the Escher's World research project at the Massachusetts
Institute of Technology Media Laboratory. During the spring and summer of 1995, the
project brought high-school students in grades 9 and 10 (age 14-16) from public schools
in Boston, Massachusetts to the Media Laboratory. Students attended brief but intensive
workshops where they created posters and worked on other design projects using
mathematical ideas of mirror and rotational symmetry.
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3 METHODS

3.1 Workshop Activities

The Escher's World project ran two workshops for students. In each workshop, six or
seven students from Boston public schools came to the Media Lab for twelve hours of
workshop activities spread over two or three days. The workshops were divided into two
sections, one about mirror symmetry, the other about rotational symmetry. Each section
had two sets of activities: investigations and explorations.

3.1.1 Investigations

Investigations lasted approximately one hour. Students worked on a series of short
problems relating to symmetry on their own or in small groups, wrote entries in their
workshop journals, and discussed their observations with a workshop leader as
facilitator. In the first day of the workshop, for example, students began their
investigation of mirror symmetry by making name-tags that read normally when viewed
in a mirror. This was followed by a search for words that look the same when viewed in
a mirror, and from there to the classification of the letters of the alphabet by their mirror
lines.

3.1.2 Explorations

Based on their investigations, students spent three to four hours working on extended
projects in design on their own or with a partner. Students worked on one shorter project
(approximately one hour), and then presented their work to the group for discussion,
questions, and comments. Following this “peer review,” students began a more
ambitious project (approximately two hours), integrating ideas about symmetry,
principles of design, and feedback from their presentation. In the first day of the
workshop students followed their classification of the alphabet by creating a design of
their own choosing that had mirror symmetry. After discussing their designs, students
worked for the remainder of the day creating designs that had mirror symmetry but did
not place the focus of the composition in the middle of the design (see Figure 1).
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Figure 1: Student work from Escher's World: learning about composition and symmetry

3.2 Workshop Resources

3.2.1 Workshop Space

The workshops took place in a single conference room approximately 15' by 25' that had
been modified to resemble an art studio. Works of art by students and professional
artists were placed on the walls, and a variety of artistic media available for students'
use. In addition to the author, who acted as workshop leader for both workshops, there
were one or two other adults in the studio as a resource for students.

3.2.2 Equipment Used

Macintosh computers were available for student use during the workshops, with one
computer available for every two or three students. Computers were connected by a
network to flatbed scanners, color printers, and a large format color plotter. Computers
were equipped with Aldus Superpaint and Adobe Photoshop (commercially-available
drawing and image-manipulation programs; Aldus Corp. 1993, Knoll et al. 1993) and
with the Geometer's Sketchpad (commercially available educational software for
mathematics; Jackiw 1995). During the investigation portion of the workshops, students
were introduced to some of the basic functionality of these programs (particularly the
Geometer's Sketchpad). Students were able to work on the computers or with traditional
materials during their explorations; all of the students chose to use a computer for some
portion of their work.

3.3 Data Collection
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3.3.1 Kinds of Data Collected

Escher's World uses a qualitative model of research (Geertz 1973, Glesne and Peshkin
1992, Maxwell 1992, Weiss 1994). Qualitative research attempts to understand
phenomena by gathering a rich set of data for a limited number of instances. The main
source of data for the Escher's World workshops was full, structured pre- and post-
interviews conducted with each of the workshop participants immediately before and
after the workshop, as well as an additional “affect interview” with each student from
two to five months after the completion of the workshop. The format of these interviews
and their subsequent analysis was guided by 14 preliminary interviews conducted with
students, mathematics and art teachers, and experts in the field of symmetry. Interviews
were supported by videotapes of the workshops and field notes from workshop leaders
and other facilitators. Student sketches and designs from the workshops and student
journals were preserved for review and analysis. Students in the second workshop were
also given a brief survey about their feelings towards mathematics, art, and computers
immediately before and after the workshop.

3.3.2 Structure of Interviews

The structured pre- and post-interviews were divided into three components. The first
component was a series of affect questions about mathematics and art, ‘focusing
particularly on attitudes towards these disciplines. The second section of each interview
was a detailed discussion of four works of art from a set of 7 images (see Appendix for
images). The works of art were reproduced in standard size and format, and students
were given three prompts: (1) How would you describe this to someone who had not
seen it? (2) Would it be difficult to make something like this? (3) Do you like this piece?
The final section of the interviews consisted of two to four mathematics problems from a
set of 16 problems (see Appendix for problems). Students were asked to solve the
problems, and to describe their thought process as they worked. Affect interviews
(conducted two to five months after the workshops) were similar in structure to the first
section of pre-and post-workshop interviews. In affect interviews, students described
their attitudes towards mathematics and art.

3.3.3 Structure of Survey

The surveys given to students before and after the second workshop asked students to
rate how strongly they agreed or disagreed with a series of statements about
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mathematics, art, and computers (see Appendix for survey questions). Ratings ranged
from 5 (agree strongly) to 1 (disagree strongly).

3.4 Data Analysis

3.4.1 Coding of Interviews

Each section of the interviews (affect questions, image descriptions, and word problems)
was coded seperately. In order to provide consistency across the interviews, excerpts
were mixed randomly before coding, and coding within each secton of the interview
questions (affect questions, image descriptions, and word problems) was done by the
same person and checked for accuracy.

3.4.1.1 Codes for Image Descriptions

Design texts divide the basics of design education into “elements and principles”
(Johnson 1995), where elements generally refer to particular physical portions of the
design image and principles refer to formal or systematic relations between elements.
Excerpts about images were assigned codes for elements of “form” and “color” and
principles of “symmetry” and “composition”. These categories were based on
preliminary interviews with students, symmetry experts, and mathematics and art
teachers, where novices used elements of form and color in their descriptions of images
and experts used principles of symmetry and composition.

People tend to go through stages in their development of visual and aesthetic
understanding across a range of topics (Parsons 1987). That is, there are stages in their
understanding of color, or in their interpretation of forms or composition. Codes for the
topics identified in preliminary interviews were subdivided into two stages for the
purposes of this analysis: “general” comments and “analytical” comments.

For elements (form and color), general comments referred to excerpts that contained
catalogs of shapes or colors (“a lot of circles and lines”). Analytical comments about
elements were those that referred to specific relationships between elementis of the
picture (“the green is too dark for the bright blues and purples”), that distinguished
between similar elements based on a specific criteria (“the sun is blue, and then [there is]
another sun, smaller—it's red”), or that combined elements into larger descriptive units
(“diamond shapes all together combined into like a star”).
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Similarly, general comments about principles referred to excerpts that contained
informal descriptions of formal concepts such as symmetry and composition. For
instance, one student's comment that in an Escher print “the heads are all together
everywhere you look... so it's like they're standing right beside each other in different
[places] ” was coded as “symmetry, general. ” Analytical comments about principles
were those that used formal or mathematical descriptions of symmetry (“it's four time
radial symmetric”) or composition (“it doesn't really have a focus—or it has multiple

focuses™).

Thus, the coding matrix for images had 8 cells:

Elements Principals
Form Color Symmetry Composition

General

Analytical

Many excerpts were coded in more than one category. The following description, for
and “symmetry,

L1

example, was coded for “form, analytical,” “color, general,
analytical,”:

I noticed these little blue lines coming out of these little red designs, and I
realized that it was angular symmetry. It looks like... whoever made this could
have just started out with a block that had on two sides the red and blue base,
and then on the rest of it just made the yellow, and these blue dots and red dots
and the little line right there, and then made part of the circle, or one fourth of
those circles—and then... made four versions of it with different angles and...
moved them together.
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3.4.1.2 Codes for Word Problems

Word problems were coded for students' use of a visual representation during some
portion of the problem-solving process (usually some form of sketch of the problem).
Following Rieber, the term visual representation was used broadly to refer to
“representations of information consisting of spatial, non-arbitrary (i.e., 'picture-like’'
qualities resembling actual objects or events), and continuous... characteristics,”
including both internal and external representations (Rieber 1995). Problems were also
coded for correct or incorrect answers to the problem, where “correct” answers included
answers that fit the stated conditions of the problem even if a student's solution was not
the “expected” answer.

3.4.2 Statistical Analysis

When coding was complete, frequencies were tallied for each code. Pre- and post-
interview totals were compared overall, between workshops, and for individual students.
Student responses for affect interviews were included in the analysis of students'
attitudes. The statistical significance of observed changes was computed using a t-test
with n = 12. Results for the survey from the second workshop (with n = 6) were
similarly tabulated and analyzed.

4 RESULTS

4.1 Criteria for Understanding

Mathematics education reformers argue that change in mathematics education needs to
affect not only the setting in which learning takes places, but also the goals toward
which learning is directed. Traditional approaches to education do not place first priority
on students understanding mathematical ideas (Brandt 1994, Perkins and Blythe 1994).
Tests stress coverage of the “content” of the curriculum, or limited skills acquisition. In
contrast, theorists emphasize that “understanding” requires that students develop the
ability to use ideas in appropriate contexts, to apply ideas to new situations, to explain
ideas, and to extend ideas by finding new examples (Gardner 1991, Gardner 1993,
Sierpinska 1994). The goal of the Escher's World project was to help students develop
this kind of understanding of mathematics through studio activities.
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4.2 Students Learn about Symmetry

4.2.1 Use of Symmetry in Designs

Students were able to use the concept of symmetry to create original designs. During the
workshops all of the students (12/12) were able to make designs using mirror symmetry,
and 83% of the students (10/12) were able to make designs using rotational symmetry.

4.2.2 Application of Symmetry to Analysis of Images

Students developed their ability to apply the concept of symmetry to the analysis of
images. Before the workshop, students made analytical references to symmetry an
average of 0.5 times while looking at 4 images in structured interviews. After the
workshop, mean analytical references to symmetry rose to 4.3 references over 4 images
(see Figure 2, mean change +3.8, p<0.01).

Andytical References to Symmetry in Designs during
Interviews

BPre
W Post

Number of References

LY 21 12 22 23 24 13 14 1.5 1.6 25 26
Students

Figure 2- Students leaned to use symmetry to analyze images. Students 1.1-1.6 attended the first workshop;
students 2.1-2.6 attended the second workshop. Students have been ordered for clarity of presentation.

The small change in the total number of analytical comments (mean change +1.4 ref-
erences; p = 0.36) suggests that students were not becoming more analytical overall;
rather, as students began to use the concept of symmetry as a tool for analysis, they
replaced some other form of analysis. As shown in Figure 3, change in analytical refer-
ences to color (mean change -0.8 references; p = 0.16) were not statistically significant.
Analytical references to composition were too small in pre-interviews (1% overall) to
account for the rise in analytical references to symmetry. This suggests that students
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replaced an analysis in terms of the elements of form with a more mathematical analysis
in terms of the principal of symmetry. This hypothesis is supported by the change in
percentage of analytical comments made about forms and change in percentage of
analytical comments made about symmetry, which have a coefficient of correlation of
0.76 across all students.

Andyticd References in PRE interview (12 students)

100%

J
1

80% T 75%

60%

40%

20%

Percent of references in categon

0%
Symmetry Forms Cdor Composition
Category

Figure 3: Rise in analytical references to symmetry was related to a drop in analytical references to forms.
Graph shows aggregate data for 12 students in 2 workshops. Change in symmetry references is +30%; change
in references to forms is —29%.

It should be noted here that students also showed an increase in analytical references to
composition, which will be discussed in a later paper about arts learning in Escher's
World.

4.2.3 Use and Explanation of the Concept of Symmetry

The number of students who could use and explain formal concepts of symmetry rose
dramatically over the course of the workshop (see Figure 4). Some student explanations
of symmetry were fairly general descriptions even after completing the workshop, but
others are quite specific. For example, one student said: “If you drew a line down the
middle—the line of symmetry—the two halves would be identical. They would be
exactly the same: mirror images of each other.”
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Students who Use and Expldin Concepts of S ymmetry

12 1

1

OBefore warkshop

10 + W After workshop

Number of Students
o

Mirror S ymmetry Rofafiond S ymmetry

4.2.4 Finding New Examples of Symmetry

After the workshop, students started to see symmetry in the world around them: 75% of
the students (9/12) reported thinking about symmetry beyond the context of the
workshop in post interviews or follow-up interviews. Students reported secing symmetry
in drawings, chairs, wallpaper, rugs, video games, flowers, and clothing.

4.3 Students Learn to Solve Mathematics Problems Visually

4.3.1 Use of Visual Repesentations Shows Mathematical Understanding

The workshop did not deal with mathematics word problems, or explicitly with the use
of visual representation as a tool for solving traditional mathematics problems. After the
workshop, however, students used visual representations as a successful problem solving
strategy. Only 33% of the students (4/12) used visual representations to solve word
problems before the workshop, while 75% of students did after the'workshop (see
Figure 5, p < 0.06).
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Andlyticd References in POST interview (12 students)
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Figure 4: Students leamned to use and explain symmetry through design. Graph shows data for 12 students in
2 workshops
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Use of visud representation during problem solving dfter
workshop
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Figure 5: Students learned to use visual representations during problem solving. Students 1.1-1.6 attended
the first workshop; students 2.1-2.6 attended the second workshop. Students have been ordered for clarity of
presentation.

For example, in Figure 6, the student did not use a visual representation to solve the
problem: “One day, Julie decides to go for a walk. She leaves her home and walks for 2
miles due north. Then she turns right and walks for 3 miles due east. After Julie turns
right again and walks for another 2 miles, she decides to go home. How far does she
have to go to get back to her home?” After the workshop, the same student working on a
similar problem used a visual representation of the problem situation.

3
N-9 4
9 9

Figure 6: One student's notes while solving a problem during interviews. In the pre-interview (left image),
the student did not use a visual representation. While solving a similar problem during her post-interview
(right image), the student represented the problem visually andproduced a correct solution.
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4.3.2 Visual Representations as a Successful Problem Solving Strategy

Use of visual representations for word problems after the workshop was correlated with
success in problem solving during post interview problems (see Figure 7; r = 0.83).
Some students solved problems without using visual representations, and some students
used representations but failed to solve problems; however, no student solved more
problems overall than the total number of problems they attempted using visual
representations. This is reflected in the absence of data points above and to the left of
the dotted line in Figure 7.

Visud repres entations and success in solving word problems
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Problems where visud repres entation was used after workshop

Figure 7: Visual representations helped students solve problems (r = 0.83)

4.4 Students Like Mathematics More

In post-interviews and follow-up interviews, 67% of students overall (8/12) reported
feeling more positive about mathematics as a result of the workshop. This reported
change was supported by data from a written survey. The survey was given to six of the
twelve students who participated in the workshops. In the survey, students responded to
4 prompts about mathematics:

“I like math class/I don’t like math class.”
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“I like doing math problems/I don’t like doing math problems.”

“I like thinking about math/I don’t like thinking about math.”

“I understand math/I don’t understand math.”

Students marked a scale from 5 (most positive) to 1 (least positive). As shown in Figure
8, total rating for the 4 mathematics questions went up for two-thirds of students who
were given the written survey (4/6). No student's total rating went down from pre- to
post-interview survey. Change for the “I like math class/I don't like math class” prompt
(mean +0.67, p < 0.01) was particularly striking.

Attitude towards Mathemdtics

400% -

1

Survey total after workshop as percentage of
survey total before workshop

2,1 2,4 2.5 2,6 2,2 2.3
Students

Figure 8: Students felt more positive about mathematics after the workshop. Graph shows data from survey
conducted for the second workshop only. Students have been ordered for clarity of presentation.
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5 DISCUSSION

5.1 Background Work
5.1.1 Constructionism

The design of the Escher's World workshops was based on the constructionist theory of
learning developed by Seymour Papert at the MIT Media Laboratory (Papert 1991a,
Papert 1993). There have been a number of attempts since the turn of the century to
introduce “learning by doing” into American education (Dewey 1938, Prawat 1995).
The learning theory of “constructivism,” developed by Jean Piaget and applied to
mathematics education in the United States by Les Steffe, Jere Confrey, Paul Cobb,
Ernst von Glasersfeld, and others, has been used as a psychological basis for a variety of
education reforms in the United States beginning in the 1960s. Constructivism asserts
that students must create knowledge for themselves out of their own experiences (von
Glasersfeld 1995, Phillips 1995). These two ideas came together in the theory of
constructionism, which suggests that building things is a particularly rich context for
building understanding. The theory of constructionism has been supported by
investigations into the way students learn through the design and construction of real
objects and virtual microworlds (Kafai and Harel 1991, Resnick 1991, Resnick and
Martin 1991, Resnick and Ocko 1991). By demonstrating that effective mathematics
learning takes place in the context of a design studio, Escher's World shows that the
visual arts are another potentially effective environment for constructing mathematical
understanding by constructing physical and virtual objects.

5.1.2 Visual Art and Mathematics Learning

Escher's World shows that the mathematical concept of symmetry can be explored and
learned in an art studio environment. This basic result supports the ideas of numerous
theorists who have suggested that learning in traditional academic disciplines can be
enhanced or even transformed by the arts (Read 1943, McFee 1961, Arnheim 1969,
Field 1970, Silver 1978). In a recent study, for example, Willett showed that
mathematics learning was more effective in the context of arts-based lessons than with
standard mathematics pedagogy at the elementary school level (Willett 1992). Arthur
Loeb's visual mathematics curriculum (Loeb 1993) has not been studied formally, but
substantial anecdotal evidence supports his approach to the study of symmetry through a
design studio as an effective learning environment for undergraduate students.
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5.2 Significant Results of Escher's World

The results reported in this paper extend earlier research in two important dimensions.

5.2.1 A New Mode for Problem Solving

Willet's research established that elementary students can learn mathematics content
effectively in an art studio setting. The results of Escher's World support this same
conclusion for high-school students, but also show that after exploring mathematical
ideas in an art studio setting, students gain access to an additional mode for thinking
about mathematics problems. In the Escher's World workshops, learning mathematics in
the context of visual arts helped students learn to use visual thinking as part of their
mathematics problem solving.

Although a number of researchers argue that visual thinking is related to successful
mathematical thinking (Piemonte 1982, Hershkowitz and Markovits 1992), recent work
by Campbell et al. suggests that students' visualization ability is not necessarily a factor
in their success at solving problems (Campbell et al, 1995). Data from the Escher's
World study shows that students’ use of visual thinking during problem solving was
correlated with their success in solving word problems after the workshop. This suggests
that the workshop activities helped students make a more effective connection between
visual thinking skills and mathematical problem solving.

5.2.2 Change in Affect

Data from Escher's World also suggests that students’ learning of content and skills in an
art studio environment is connected to a positive change in attitude toward mathematics.
Willett's study of elementary students did not address students' attitude toward
mathematics. In another study of the effect of arts activities and mathematics with fourth
grade students, Forseth found that students’ attitude towards mathematics improved, but
that there was no significant improvement in students test scores compared to a control
group (Forseth 1976). Results from Escher's World suggest that under the proper
circumstances, positive change in students' attitude towards mathematics can be
achieved in combination with meaningful changes in the way students approach
mathematics problems.

5.3 Limitations of the Study
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While the students in the two workshops discussed in this paper showed significant
development in their mathematics knowledge, skills, and attitude, it is important to
remember that Escher's World represents a very brief intervention. It was necessarily
limited in the number of mathematical topics that students could investigate, and in the
depth to which students could explore any one topic. It is not clear that the large positive
changes seen in this brief but intensive intervention would continue at the same rate over
a longer intervention. This fact, combined with the small sample size of the experiment,
suggests that some caution should be used in making sweeping claims based on these
data.

6 CONCLUSION

The data from Escher's World reported in this paper suggest that a studio setting is
productive context for learning mathematics. This result supports other research findings
regarding connections between mathematics and the visual arts. However, data from
Escher's World goes beyond previous work by suggesting that ‘while learning
mathematics in visual arts environment, students not only learn specific mathematical
concepts, they also develop the ability to use visual thinking as an effective tool for
problem solving.

The limited size and scope of workshop results reported in this paper, combined with the
apparent success of the “mathematics studio” as a learning environment suggest that
further work should be done to develop the concept of studio mathematics. In particular,
it would be useful to have a better understanding of the mechanism by which students
develop new modes of mathematical thinking in a studio context. This will be the
subject of a future paper on the Escher's World project.
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8 APPENDIX

8.1 List of images used in interviews

Students were shown four images in both pre and post interviews. One image was
chosen from each of the sets 1-4 below. Note that set 3 contains only one image; all
students were shown the same image in both pre and post interviews for this set. All
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8.2 List of problems used in interviews

During pre and post interviews, students from the first workshop were given two out of
four problems 1.1-1.4 below. Students from the second workshop. were given 4
problems, one each from sets 2.1-2.4 below. Students were given the problems one at a
time, each typed on a separate sheet of paper. Students had unlimited time to work on
each problem and were provided with a pad of lined paper and a pen or pencil.
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Problem 1.1

M:s. Jones has to 25 pencils and 10 pens to give to her students. She gives each
student the same number of pencils. She gives each student the same number of
pens. At most how many students does Ms. Jones have?

Problem 1.2

Bob and Tanecka each have a 12-inch pizza pie. Bob cuts his pizza into 8
pieces. Tanecka cuts her pizza into 6 pieces. If you put the pizza's one on top of
the other, at most how many cuts in Bob's pizza would be in the same place a
cut in Tanecka's pizza?

Problem 1.3

Sally and Juan each have a 14-foot ladder. Sally's ladder has 21 rungs on it.
Juan's ladder has 15 rungs on it. If you put the two ladders side by side, how
many rungs would be in the same place?

Problem 1.4

A group of students has 12 apples and 15 oranges. They share the apples and
oranges so that each students has the same number of whole apples and whole
oranges as every other student has. At most how many students could there be
in the group?

Problem 2.1a

One day, Julie decides to go for a walk. She leaves her home and walks for 2
miles due north. Then she turns right and walks for 3 miles due east. After
Julie turns right again and walks for another 2 miles, she decides to go home.
How far does she have to go to get back to her home?

Problem 2.1b

One day, Julie decides to go for a walk. She leaves her home and walks for 2
miles due north. Then she turns right and walks for 4 miles due east. Julie then
realizes that she dropped her watch 1 mile back. She turns around and walks
until she reaches her watch. After she picks up her watch, Julie turns right again
and walks for another 2 miles due south. Now Julie wants to go home. How far
does she have to go to get back to her home?
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Problem 2.1¢

A leaf falls and lands 5 yards east of the tree it was on. A boy picks up the leaf,
and walks 10 yards north. The boy sees a swing set on his left, 15 yards to the
west. He runs to the swings, but drops the leaf 10 yards before he reaches the
swings. How far is the leaf from its tree after the boy drops it? ‘

Problem 2.2a

One border of Theo’s backyard is 20 yards long. Theo wants to put up a fence
along this border. If he puts up one fencepost every 5 yards, how many posts
does Theo need?

Problem 2.2b

One border of Theo’s backyard is 20 yards long. Theo wants to put up a fence
along this border. If he puts up one fencepost every 5 yards, how many posts
does Theo need? Problem Number 2 Theo wants to put up fences along two
borders of his backyard. One border is 15 yards long, the other is 20 yards. If
he puts up one fencepost every 5 yards, how many posts does Theo need?

Problem 2.2b

Yolanda has a pipe that is 8 feet long. She needs to cut the whole pipe into
pieces that are 2 feet long. How many cuts does she need to make?

Problem 2.3a

A snail is stuck on the inside wall of a well, 5 feet down from the top of the
well. It moves 3 feet up the wall every day. But every night, the snail slips 1
foot down the wall. After how many days will the snail reach the top of the
well?

Problem 2.3b

A snail is stuck on the inside wall of a well, 5 feet down from the top of the
well. It moves 2 feet up the wall every day. But every night, the snail slips 1
foot down the wall. After how many days will the snail reach the top of the
well?
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Problem 2.3¢

Yanni goes to his favorite restaurant and orders an 12 ounce soda. Every time
he finishes drinking 4 ounces of his soda, a waiter pours 1 more ounce of soda
into his cup. How many times will the waiter pour soda into Yanni's cup before
Yanni completely empties his cup?

Problem 2.4a

Leo asks Luanda if she will lend him money for a hamburger. Luanda says,
“But you borrowed money for a hamburger from me yesterday! And you still
owe me 1 dollar for the soda you bought last week!” So Leo says, “Well, okay
~ lend me money again today, and I'll owe you 4 dollars all together.” How
much does a hamburger cost?

Problem 2.4b

Leo asks Luanda if she will lend him money for a hamburger. Luanda says,
“But you borrowed money for a hamburger from me yesterday! And you still
owe me 80 cents for the soda you bought last week!” So Leo says, “Well, okay
— lend me money again today, and I’'ll owe you 4 dollars and 30 cents all
together.” How much does a hamburger cost?

Problem 2.4¢

Two years ago, Janelle was four times as old as Sangita. If Janelle is twenty
years old now, how old is Sangita now?

8.3 List of survey questions used in interviews

Students were given the following “sample question”:

For each set of statements, circle the number that represents how you feel.

Example:
1like talking onthe phone. 5 4 3 2 1  Idon’tlike talking on the phone.
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If you really like talking on the phone, circle 5. If you like it most of the time, circle 4. If
you like it half of the time and don’t like it the other half, circle 3. If you don’t like it
most of the time, circle 2. If you really don’t like talking on the phone, circle 1.

The survey consisted of 15 questions, all in the same format as the example:

I like school./I don’t like school.

1 like math class./I don’t like math class.

I like doing math problems./I don’t like doing math problems.

I like thinking about math./I don’t like thinking about math.

I understand math./I don’t understand math.

I like to make art./I don’t like to make art.

I like looking at art./I don’t like looking at art.

I like thinking about art./I don’t like thinking about art.

. Tunderstand art./I don’t understand art.

10.1 like computers./I don’t like computers.

11.1 understand computers./I don’t understand computers.

12.1 learn a lot from listening to the teacher./I don’t learn a lot from listening to the
teacher.

13.1 learn a lot from working on a computer./I don’t learn a lot from working on a
computer.

14.1 learn a lot from working with other students./I don’t learn a lot from working with
other students.

15.1 learn a lot from working by myself./I don’t learn a lot from working by myself.

WA R LN
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Members of the symmetry class at Canisius College, fall semester
1992, discussing a project involving Penrose’s nonperiodic “kite
and dart” tiles. (Left to right) M. Kearns, F. Bochynski, E. Caldero,
J. Trost, Ray Tennant, D. Sherman, J. Krutz, and M. Henry.
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Abstract: Symmetry forms a natural bridge between the worlds of mathematics and art.
It is this connection combined with the creative imagination of students that forms the
basis for the mathematical symmetry course that is described below.

THE COURSE - MATHEMATICAL SYMMETRY:
A MATHEMATICS COURSE OF THE IMAGINATION

In his classic, Symmetry, Hermann Weyl describes symmetry as the "harmony of pro-
portions". It is this notion that is the common thread running through the university
mathematics course titled Mathematical Symmetry: Connections between Mathematics
and Art.

A main perspective of the course holds that students have strong visual senses and that
they may be introduced more easily to complex ideas by appealing to their geometric
intuition. The students explore about ten major topics, including tiling theory, geometry
in nature, group theory, non-Euclidean geometry, 3-dimensional tessellations, and
fractals This is done with the aid of straightedge and compass constructions, computer
programs, polyhedral models, and examples drawn from the worlds of art and
architecture. Each student creates a planar design project and writes a thesis paper
involving the imagination. Earlier versions of the symmetry course have been popular
with fine arts majors and prospective math teachers as well as students from other
disciplines such as psychology, music, history, and engineering. In fact, the classes have
been most enjoyable when the students who are participating are drawn from a variety
of disciplines.

Goal of the course

The symmetry course covers a number of interesting topics from the world of
mathematical symmetry. The class is encouraged to explore geometrical ideas using
constructions, computer programs, models, and a variety of other investigative
techniques. The spirit of the course is based on the Chinese proverb:
I hear and it helps a little.
I see and ideas begin to form.
1 do and ideas become real to me.
I do, see, and hear and I understand.
I talk about it and I understand more.
I apply it and I see it's value.
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Picture Syllabus - Mathematical Symnietry

Non-Euclidean Geometry ~ Fractal Geometry Topology
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Flow of topics

I. Geometry in Nature & Architecture
The Golden Ratio & Fibonacci Numbers
Phyllotaxis

II. Geometric Constructions
Straightedge and Compass Constructions
Pythagorean Constructions
Polygon & Star Polygon Constructions
Geoboard Constructions
Impossible Constructions

III. Symmetry Groups
Isometries & Groups of Motions
Symmetry Group of a Pattern
Isomorphism of Symmetry Groups
Cyclic & Dihedral Groups, Group Tables
Design in Hubcaps & Logos
Leonardo's Theorem, Frieze Groups

IV. 3-Dimensional Symmetry
Platonic Solids & Semiregular Polyhedra
Euler's Formula & Schleigel Diagrams
Symmetry Motions in Space

V. Tiling Theory
Regular & Semiregular Tessellations
Transforming Tilings into "Escher Designs"
Crystallographic Restriction
Wallpaper Groups
Nonperiodic & Aperiodic Tilings

VI. 4-Dimensional Symmetry
Flatland
Salvador Dali's "Corpus Hypercubus"
Hypercubes & N-Dimensional Symmetry

VII. Non-Euclidean Geometry
The Sphere & the Poincare Disk
Escher's "Circle Limit IV"
Hyperbolic Tessellations

397
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VIIL Fractal Geometry
Von Koch's Snowflake
Computer Generated Fractals
IX. Elementary Topology & Graph Theory Topics
Surfaces & Nonoriented Surfaces
Konigsberg Bridge Problem, 4 Color Problem
X. Geometric Perspective in Art
Albrecht Diirer’s "St. Jerome in His Cell"

The planar design project

For many students in the symmetry course, the 2-dimensional design project has proved
to be an exciting and challenging endeavor. Students are free to choose a project from
the various topics in the course, e.g. tiling theory, wallpaper groups, color groups,
fractals, hyperbolic tessellations, etc. As it develops, each student discusses their project

with the class. IL\ZALLL)}AIBIEL{ P IS, O}E (T
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The written project of the imagination

Required reading
Flatland: A Romance of Many Dimensions by Edwin A. Abbott, 1884.

Other possible reading (discuss with instructor)

Sphereland, a Fantasy about Curved Spaces and an Expanding Universe by Dionys Burger and Comelie
Reinboldt, 1965.

Beyond the Third Dimension: Geometry, Computer Graphics, and Higher Dimensions by Thomas Banchoff,
1990.

Hyperspace: A Scientific Odyssey through Parallel Univrerses, Time Warps, and the 10" Dimension by
Michio Kaku, 1994,

The Mathematical Tourist: Snapshots of Modern Mathematics by Ivars Petersen, 1990.

Goal of the Assignment

To use writing and the imagination as a way of gaining insight into an abstract land in
the world of mathematics (e.g., 4-dimensionland, or even n-dimensionland, the land of
fractals, non-Euclidean worlds, topology landscapes, and others.

The research for the paper may involve reading, discussion, the study of a painting, a
computer investigation or some other method of discovery. The student will then use
imagination to describe an aspect of their abstract world or to create a fictitious story
which extends their new world in some way.

Assignment Steps

1. All students read Flatland and are given written assignments to describe aspects of
Flatland and then to use their imagination to extend Flatland to areas which are not
covered in the book.

2. Each student chooses an abstract world that they wish to investigate.

3. Each student finds a resource (possibly a book, a painting, a computer program, etc.)
as the motivating thesis for their paper.

4. Through discussions and rewrites, each student writes a thesis paper about their
abstract land. The paper can range anywhere from being scientific to being pure fantasy.

5. The writing projects evolve over the semester and students discuss their progress
during class.
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Some writing projects of the imagination from past symmetry classes are listed below.

* A Flatland Person

Discovers "Up" or
"Upward not
Northward".

* Police and the Law in
Flatland.

* Salvadore Dali's "The
Crucifixion", subtitled
"Corpus  Hypercubus"
and Hyperspace.

*  Salvadore  Dali's
"Clocks", and Mappings
in Topology.

* Can 4D-man turn 3-D
man inside out?

* The Poincare Pool and
Hyperbolic Fish.

* Picasso, Cubism, and
the 4th Dimension.

* Fractal Dimension:
Between Lines and
Planes.

* Magic Squares and
Polyhedra in Albrecht
Diirer's "Melancholia"

Salvadore Dali’s Corpus Hypercubus 1954



Symmetry: Culture and Science
Vol. 8, Nos. 3-4, 401-408, 1997

SEEING THROUGH SYMMETRY
— AS SEEN THROUGH ITS LABS

Laurence I. Gould

Physicist

Address: Physics Department, University of Hartford, 200 Bloomfield
Avenue, West Hartford, CT 06117, US.A,; E-mail:
1gould @mail.hartford.edu

Fields of interest: Mathematical physics, science education,
interdisciplinary symmetry.

Publications: (a) What Is Symmetry That Educators and Students Should
Be Mindful Of It?, Chapter for the book, Interdisciplinary General
Education: Questioning Outside the Lines, Seabury, M. B., ed., NY:
College Entrance Examination Board (1999). (b) Faraday's Legacy: The
Joys of Scientific Methodology, Guest Editorial for QUANTUM
(November/December 1998), pp. 2-3. (c) Reflections of the Relevance of Nonlocality to Cognitive Science
and the Philosophy of Mind, from New Directions in Cognitive Science, Proceedings of the International
Symposium (Saariselka, 4-9 August 1995, Lapland, Finland). (d) Nonlocal Conserved Quantities, Balance
Laws, and Equations of Motion, International Journal of Theoretical Physics 28, 335 - 363 (1989) (e)
Audio-Visual Aids in Materials Science and Engineering: A Current Overview, Journal of Materials
Education 11, 169 - 180 (1989) .

Abstract: Seeing Through Symmetry is a one-semester course that has been created for
non-science majors. Here symmetry is utilized as what could be called a “hub
concept”. It is as if it stood for the axis of a cylinder consisting of a multidisciplinary
world with ties to disciplines constituting the surface, and with the disciplines, as a
consequence, tied to each other. Through this hub many aspects of the scientific and
artistic worlds can be better understood and appreciated. In this paper that is
explained primarily through the description of a highly graphical laboratory
experience. The labs utilize computers in order to explore the many facets of symmetry
(in such areas as geometry, the arts, biology, music, and physics) and enable students to
create patterns through the use of hardware/software packages and elementary
programming.
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1 INTRODUCTION

Seeing Through Symmetry is a one-semester course that has, on the average, run every
fall and spring for the past six years. I have created this course in order to enable
students explicitly to develop their quantitative abilities and analogical thinking by using
concepts of symmetry both as a method within a discipline and as a bridge between
disciplines. Starting with topics of symmetry in the ancient world, we then go on to
broaden, refine (through a precise definition of “symmetry”), and interrelate those topics
to the symmetry in areas such as art, poetry, music, mathematics, physics, chemistry,
biology, and cosmology. Thus students “see through” (i.e., understand) the concept of
symmetry as well as “see the world” through (i.e., by means of employing) the concept
of symmetry. They develop interrelational and scientific abilities, in part, through the
medium of a highly graphical laboratory experience; this utilizes computers in order to
explore the many facets of symmetry (in such areas as geometry, the arts, biology,
music, and physics) including the generation of their own patterns through the use of
hardware/software packages and elementary programming. [There are, as the readers of
this journal know, innumerable references for symmetry in education. A particularly
good description of symmetry's value for education in general and for science education
in particular is given by (Klein, 1990, p. 86).]

2 LECTURES

These are multimedia interactions: Two films are shown: One of these is an easily
understood general introduction to a variety of symmetries (Robinson, 1970); the other
stresses the glories of learning as seen through the mind of the prototype “Renaissance
man”, Leonardo da Vinci (Bobker, 1992). An audiotape is employed to demonstrate the
use of the Golden Ratio in Bartok's “Divertimento for Strings”. A laser is used to
exhibit both the wave interference phenomenon called “diffraction” and the manner in
which light waves can interfere to produce a hologram. A special feature of the course
is a computer-animation-and-sound show that illustrates symmetry in art, geometry,
geophysics, and both cellular and molecular biology (including the dynamically
“broken" symmetry through a portion of a motion picture showing the “sickling” of a
circular red blood cell into one shaped like a crescent moon, a signature of the disease
called “sickle cell anemia”).

Over the years the subject matter of the course has been broadened. Some of the more
recent topics which Seeing Through Symmetry includes are: the structure and function
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of DNA, the nature of the chemical bond through explanations of electric forces,
scientific bases for common uses of electricity, an introduction to the mathematical
theory of groups with applications to computer algorithms, the application of waves to
some aspects of the strange world of quantum physics, and the very important issue of
scientific methodology (as exhibited in part through the use of Venn diagrams to
illustrate class inclusions and methods of concept formation).

We were able to outfit a multimedia classroom, in part as a result of a 1993 NSF
Instrument and Laboratory Improvement grant (No. DUE-9352670) for the course. The
room contains 12 nodes, each with a Mac computer (plus desk lamp) in a space that
easily accommodates two students, an instructor node with another Mac tied to a
projection system at the front center of the classroom, and a laser printer on the opposite
side of the room from this node; all are connected via an Ethernet network. There is
also a VCR player connected to a large monitor at the front right side of the room, a
non-chalk board (which has its own lighting) at the front center, and an overhead
projector at the front left side. The instructor node permits access to each of the student
nodes (e.g., for loading software or transferring files). The equipment is completed by a
variety of hardware and software packages used both in teaching and in the laboratory
portion of the course.

3 LABS

The laboratory experience gives the student a more complete sense of what is discussed
in lecture. The labs, meeting for two hours once each week, have extensive student
interactions with discussion being continually encouraged among the participants.
Although students work in pairs, an individual typed report is required for each lab.
Earlier labs feed into later ones as lower-level abstractions feed into higher-level ones.
The labs are briefly described below in relation to the question: What is the activity and
how does it connect to other areas of the course so as to convey the interdisciplinary
experience? (Subjects referred to are covered earlier during lecture.)

3.1 Computer Drawing: Reflections, Rotations, and Designs

The object of this lab is to: (a) introduce students to the computer, and (b) enable
participants to create and understand designs that have reflectional or rotational
symmetry. Students can test for those symmetries by using the software package to
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compare an “image” of the design with the design itself. They can also do a comparison
by getting a printout of their design on which can be laid a transparency for tracing the
design and then folding or rotating that tracing. In addition they can create their own
colored designs using a variety of reflectional and rotational symmetries. In this way the
student sees a relation between symmetry and art.

3.2 Learning Algorithms through the Language of Logo

The object of this lab is to enable students to learn about a computer algorithm. What
they see is how a repetitive command, or “algorithm”, can be used to create certain
simple figures. Hence they experience “time-translational” symmetry which they can,
for example, interrelate to rhyme schemes of poetry.

3.3 Drawing and Hearing Patterns: Polygonal Symmetry and Fibonnacci Tones

In this lab (a continuation of 3.2) the student: (a) employs algorithms (via Logo) to
simplify the creation of regular polygons that have both reflectional and rotational
symmetry, and (b) uses the Fibonnacci sequence, an example of an algorithm discussed
in lectures, to hear tones and thus learn more about the musical scale. Hence students
can see connections between music, design, and computers; for example, by using the
concept of an algorithm one may create certain musical patterns.

3.4 Intricacies of Coloration: Coordinates, Translations, Groups and Tessellations

In this lab (a continuation of 3.3) the student sees: (a) how coordinates of points can be
represented by the computer, a prelude to (b) how different colors are determining
factors for the nature of translationally symmetric designs, (c) an instance from the
mathematical theory of groups, and (d) how algorithms can be created to tessellate the
screen. Hence students learn (or re-learn) the analytical-geometry basics of locating
objects in space; see how this is related to design, to poetry, and to music through the
creation of symmetries and ‘“broken” symmetries; understand how art can be a
manifestation of group theory in mathematics and how the latter can be used to create
art; and glimpse “infinity” through symmetries that can go on and on through time and
space.
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3.5 Patterns in Music: Sound and Sight

This lab takes place at our School of Music (each pair of students is in a small room
containing a piano). Its purpose is to serve as a literal “hands-on” introduction to
elementary ideas in music and music symmetry through exploration of the visual and
aural aspects of the keyboard. It does this by: (a) asking students to learn about
symmetrical patterns that can be associated with the keyboard, both visual and (what I
would call) “aural temporal”; (b) teaching them to relate the psychophysical concepts of
pitch and frequency to each other and to the Fibonnacci sequence; and (c) giving them
the experience of performing the broken symmetry of musical “rounds”. As a result of
this lab students can interrelate music, mathematics, art, and physics, with even a little
psychoacoustics!

3.6 Experiencing Motion in Space and Time

The purpose of this lab, and the ones that follow, is to see the value of technology for
investigating aspects of certain natural phenomena including those, which exist beyond
the range of human vision and hearing. The computer with auxiliary devices attached to
it is used to “extend” our visual and auditory senses. This in turn makes it possible for
us to understand the manner in which symmetric aspects of nature contribute to our
sense of the world of motion, sound, and light. In this lab students build on their
experience of graphical representations (as introduced in Lab 4) through the
visualization of scientific data obtained via the simultaneous monitoring and display of
different phenomena by computer equipment. This enables them to: (a) see the value of
technology's omnipresent concept of voltage through the display of battery outputs as a
function of time; (b) understand aspects of motion through experiencing the movement
of their hand, using an ultrasonic motion detector; (c) conceptualize some details of a
periodic phenomenon that has time-translational invariance, called “simple harmonic
motion”, using a mass-on-a-spring connected to a force probe. By means of this lab
students can see the obvious tie to mathematics, as well as to epistemology (i.e., how we
acquire knowledge about the world; in this case, scientific knowledge). They can also
see connections to art, music, and poetry. For example, the stressed-and-unstressed
pattern in poetry's sonorous iambic pentameter may be represented through the use of
visual voltage steps exhibiting a similar periodicity in time.
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3.7 Symmetry of Oscillations: Sine Waves and Sound

This lab, drawing from concepts learned in the previous one, serves as an introduction to
some elementary properties of sound by using the computer to measure periods that are
thousands of times shorter than one second. The student learns: (a) how to measure the
frequency and amplitude of periodic sinusoidal signals produced by tuning forks and
then apply that knowledge to the observation of periodic ron-sinusoidal signals; (b)
what gives rise to the remarkable symmetrical patterns, called “Lissajous figures”, that
result from combining 2 sinusoidal signals whose frequencies stand in a simple
numerical relation to each other. Ties to epistemology are seen through consistency
arguments: the participant must compare the measured value of frequency with the
“standard” value stamped on the tuning fork (is the standard value the “correct” one?
what do we mean by “correct”? do we use similar methods to acquire knowledge in the
arts?) Through the use of (b) can be seen obvious ties to mathematics as well as
feedback to the visual arts; and with a little more imagination one can see how both
music and poetry can benefit from such insights. An example is the tuning of a piano
string via visual comparisons between a given input frequency and that from the string.

3.8 Building Symmetry from Symmetry: The Fourier Spectrum

This lab serves as an introduction to the addition of symmetrical wave patterns. The
student learns about: (a) “Fourier synthesis”, as manifested in complex periodic sounds,
with their corresponding shapes, occurring when two or more simple periodic sounds
with their corresponding shapes, resembling “sine wave” shapes, are combined, or
“synthesized” (although true sine-wave shapes are referred to as “Fourier components”,
our simple approximate shapes will also be so referred to); (b) “Fourier decomposition”,
a method showing how complex periodic shapes can be broken down (or
“decomposed”) into their Fourier components, enabling students to look at the “shape”
-of their voice and of their heartbeat; and (c) how to synthesize their voice and heartbeat
from the Fourier components. There are a variety of interconnections gleaned from this
lab. Ties to mathematics are obvious. But in addition, connections can be made to the
technology of “electronic” music and voice production, the visual arts, biology (e.g.,
how does the structure and function of the vocal chords and heart relate to the nature of
the waves they produce?), and, most remarkably, to the limitations of a certain type of
knowledge through the Heisenberg Uncertainty Relation in quantum physics (e.g., why
is it that to be able to precisely locate a particle's position is to be unable to precisely
locate its velocity?).
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3.9 Waviness: In Water and Light

This lab serves as an introduction to the addition of wave patterns — a far-ranging
investigation, as it applies to almost all waves in the universe. Here the focus is on the
visual as students learn about: (a) brightness and light waves through the experience and
measurement of the intensity of light as well as through the observation of a spatial and
temporal invariance (each a symmetry property) of that intensity under certain
conditions. By modeling light as a transverse wave and using polarizers they are also
able to demonstrate and explain how such polarizers work in altering the intensity of
light; and (b) waviness in water by the computer simulation of waves, through which
students can observe the wavelength of waves, measure their speed, see how waves
interfere with each other, and observe the effects of their interference. The connections
are of course to mathematics (and once more emphasize an important epistemological
point about methodology in the physical sciences), but also to the visual arts, to music
(with the phenomenon of “intensity of light” being analogous to the “loudness of
sound”), and to cosmology (e.g., how do we know the distance to stars and what they are
made of?!).

Other labs in the planning stage are titled: “Slipping” Symmetry: Crystals, Fractals, and
Chaos; Bounced, Flipped, Rotated, and Decomposed Light: From Mirrors to Spectra;
and On Balls and Bombs: The Geometry of Projectile Motion.

4 OTHER ASPECTS OF THE COURSE

These are: (a) 2 closed-book exams; (b) a visit to a science museum: students submit a
paper describing their observations and making remarks critiquing (pro or con) exhibits
they found notable; (c) a term project: the capstone experience of the course, this
consists, in order, of a report on their preliminary idea, a progress report, a class
presentation, and the final report; (d) two types of (anonymous) course evaluations: my
own mid-semester evaluation is designed to let me take steps to immediately modify
aspects of the course; another, end-of-term All University Curriculum questionnaire has
questions related to the ones given at mid-semester. Although we are using
supplementary materials plus portions of one text (O'Daffer and Clemens, 1992) I am
currently writing a book, instructor's manual, computer demonstration files, and updated
laboratory manual.
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5. CONCLUDING REMARKS

I hope that students carry away from the course the lesson that science begins from an
individual's observations of the world as a highly imaginative probing into the workings
of nature (not just a rigid compilation of facts and formulas). Seeing Through Symmetry
is designed to help show students that the world is of a piece. It is to convey the sense
that where the human mind journeys there are no barriers.
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1. INTRODUCTION (RECREATIONAL CONSTRUCTIONS)

The purpose of this article is to show how fascinating geometrical ideas can be by
introducing the reader to some polyhedral puzzles. Our intent is to present the material
in much the order in which we ourselves discovered it. We would like you to experience
some of the joy of discovery we have had, which means, of course, that you risk
experiencing some frustration along the way before you finally achieve success in
assembling your puzzles. However, don't despair since we will give you many hints
along the way and, eventually, more complete instructions for the details involved in
assembling the puzzles.

In Section 2 we will describe how to fold the tape required to make your puzzles. In
Section 3 we will explain how to make the puzzle pieces for 9 models and challenge
you to construct some of them without any further information. We also include in
Section 3 one intriguing example of how the braided models may be used to visualise
the answer to a combinatorial question in geometry. In Section 4 we give either more
hints or complete instructions on how to actually assemble the remaining models. In
Section 5 we suggest some variations on certain models you will already have built that,
for one reason or another, seem to lack the symmetry you would expect them to have. In
this last section we will challenge you to build the more perfect tetrahedron, octahedron
and icosahedron without any further information other than the description, two
illustrations and a picture.
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Although this may be viewed as purely recreational mathematics, knowledge of the
symmetry group for each model may be helpful in solving the puzzle. We ourselves are
very much in favor of exploiting the mathematics connected with these fascinating
models' and we are delighted that the editor of this journal has suggested that our article
concerning some of the mathematics connected with these models should appear as a
companion piece to the present article, in this same issue. That related article, entitled
”Symmetry in Theory — Mathematics and Aesthetics”, abbreviated in this article to
[Math}, contains a fairly comprehensive list of references which you may consult if you
wish to build other models. Of particular relevance is [HP5] of [Math]. We also include
at the end of our companion article a brief history of how some of the folding
procedures evolved, and how our friendship with the great mathematician and teacher,
George Pélya, and with each other, resulted in mathematical collaborations concerning
these models (and other topics).

We will concentrate on the directions for constructing polyhedral puzzles (including the
Platonic solids) which have regular triangles, squares, or pentagons for faces. In order to
be able to carry out the instructions and build these puzzles you will need

(1) some ordinary unreinforced gummed tape about 2 inches wide (a minimum of 30 to
40 running feet);

(2) some large sheets of paper such as gift-wrapping paper, or brightly colored
lightweight construction paper (six different designs or colors is the most that will
be required for any of these models);

(3) a pair of scissors;

(4) some paper clips (maximum 30);

(5) some bobby pins (maximum 6);

(6) a sponge, a bow! and some water;

(7) some rags and a flat place to work.

! On one occasion we were horrified to hear a mathematics teacher answer the question, "What did you do
with the models you had the students build?" with "Oh, we hung them up!"
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2. HOW TO FOLD THE TAPE

We describe, in this section, two iterative folding procedures that may be used on your
gummed tape to fold strips of equilateral triangles and strips which can be used to
construct regular pentagons. In both of these cases the procedure is a convergent one so
that the angles you produce on the tape become more and more regular as you continue
to fold. You will also need to fold a strip of consecutive squares (but this is an exact
construction that we feel confident you can do on your own).

To fold the equilateral triangles simply follow the instructions in the numbered frames
of Figure 1.

Figure 1: 1) Begin with a long strip of gummed tape; 2) Fold UP - any way will do; 3) Unfold; 4) Fold
DOWN - now you must do it exactly as shown; 5) Unfold; 6) Fold UP, exactly as shown; 7) Unfold

Now go to frame 4, and keep repeating the folding in frames 4 through 7, to make a
string of triangles as long as you need. Notice two things. First, the folding procedure,
after your initial fold, goes DOWN, UP, DOWN, UP,... We will abbreviate this folding
procedure by D'U" and call the tape produced the D'U'-tape.” Second, you can readily
see that, as we claimed, the triangles become more and more regular as you fold. Thus,
if you wish to use this tape to construct models requiring equilateral triangles, all that
you need to do is compare successive triangles, beginning with the first one formed,
until it is not possible to detect any difference between them - and then throw away the
defective ones and continue to fold, in the prescribed manner, to obtain the equilateral
triangles you need for the constructions in Section 3. (We show in [Math] how to prove
that all angles on this tape do, in fact, approach 7/3.)

2 Of course, one could adopt the 'systematic' folding procedure in which 'DOWN' and 'UP' are interchanged.
The procedure would then be written U'D'.
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To fold tape from which you can construct regular pentagons simply follow the
instructions in the numbered frames of Figure 2.

N

Figure 2: 1) Begin with a long strip of gummed tape; 2) Fold UP - any way will do; 3) Unfold; 4) Fold
DOWN - now you must do it exactly as shown; 5) Unfold; 6) Fold UP, exactly as shown; 7) Unfold; 8) Fold
DOWN, exactly as shown; 9) Unfold; 10) Fold UP, exactly as shown; 11) Unfold.

Now go to frame 4, and keep repeating the folding in frames 4 through 11, to make a
string of tape from which you will be able to construct regular pentagons. First, notice
that the folding process, after the first two initial folds, goes DOWN, DOWN, UP, UP,
DOWN, DOWN, UP, UP,... We will abbreviate this folding procedure by D*U* and call
the tape produced the D*U-tape. Second, notice that this tape has two kinds of crease
lines, which we will refer to as short and long crease lines. Third, it is evident that the
configuration formed by these crease lines is becoming more and more regular,
reproducing the same angles at each edge of the tape. (We show in [Math] how to prove
that the smallest angles on this tape do, in fact, approach 7/5.)

This is the tape that you will use to make regular pentagons and models with regular
pentagonal faces. To see how this works throw away the first few triangles you have
folded (10 will be very safe) and continue to fold, in the prescribed manner, to obtain
the tape you need to produce the constructions in Section 3. Just to practise now, cut off
a piece of tape and make the pentagon shown in Figure 3. Notice that when you
constructed this pentagon you cut the DU tape along a short crease line, and folded on
short crease lines.
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1 2

Figure 3: Make a section of tape that looks like this (1), into a pentagon that looks like this (2)
(Shading indicates the other side of the tape).

What about the long crease lines? Try cutting along a long
crease line and folding on successive long crease lines to
construct the pentagon shown in Figure 4 (of course you
will also have finally to cut along another long crease line
to complete the model as it is shown).

Figure 4: The end of the tape must be tucked in here (arrow).

3. HOW TO MAKE THE PUZZLE PIECES OR STRIPS

This section describes how to make the puzzle pieces for the following 9 models which
naturally divide themselves into three types.

A pentagonal dipyramid with a single strip of 31 equilateral triangles.

A triangular dipyramid with a single strip of 19 equilateral triangles.
The Platonic® Puzzles:

A tetrahedron with 2 strips
* A hexahedron (cube) with 3 strips
* An octahedron with 4 strips
* An icosahedron with 5 strips
= A dodecahedron with 6 strips
(Do you notice any interesting pattern here? Do you see why we have written the

dodecahedron last, although it's usually written before the icosahedron?)

» A diagonal cube with 4 strips.
= A golden dodecahedron with 6 strips.

There are some general comments that apply to each of these 9 models. In each case
you should first make the required pattern pieces (or strips), by folding the gummed
tape. Then glue the strips onto colored paper (when more than one strip is involved glue
each strip onto paper of a different color).

% As any Greek scholar will tell you, the names of the Platonic solids are designed to show that they have 4, 6,
8, 20, 12 faces, respectively.
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When gluing the strips onto the colored paper, make certain the paper you plan to use
for each strip is large enough. Then place a sponge (or washcloth) in a bowl and add
water to the bowl so that the top of the sponge is very moist (squishy). Next moisten one
end of the strip by pressing it onto the sponge and then, holding that end, pull the rest of
the strip across the sponge (This part of the process is often messy!)* Make certain the
entire strip gets moistened and then place it on the colored paper. Use a hand towel (or
rag) to wipe up the excess moisture and to press the tape into contact with the colored

paper.

Put some books on top of the tape so that it will dry flat. When the tape is dry, cut out
the pattern piece, trimming off a small amount of the gummed tape (about 1/16 to 1/8 of
an inch) from the edge as you do this. This trimming procedure serves to make the
model look neater and, more importantly, it allows for the increased thickness produced
by gluing the strip to another piece of paper. Refold the piece {(only along the lines you
need for your particular model) so that the raised (mountain) folds are on the colored
side of the paper. You will then have your puzzle pieces and can proceed to construct
your model.

We begin the actual puzzles with the two dipyramids to let you get a feel for the way
your materials behave. We will be fairly explicit here, to get you started, but we'll be
less detailed when we come to the Platonic Puzzles.

Figure 5: (a) Left-hand end of pattern piece

< g

Figure 5: (b) Pentagonal dipyramid (c) Triangular dipyramid

* Perhaps we should have included some very old clothes as optional (or even essential) materials.
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Figure 5(a) shows the lefi-hand end of the 31-triangle strip used to construct the
pentagonal dipyramid. You should mark the first and eighth triangles exactly as shown
(note the orientation of each of the letters within their respective triangles). To assemble
the model place the first triangle over the eighth triangle so that the circled letters A, B,
C are over the uncircled letters A, B, C, respectively. Holding those two triangles
together in that position, you will notice that you have the frame of a double pyramid
for which there will be five triangles above and five triangles below the horizontal plane
of symmetry (the plane containing the vertices 1, 2, 3, 4, 5 in Figure 5(b)). Now hold
this configuration up and turn it so that the long strip of triangles falls around this frame.
If the creases are folded well, the remaining triangles will fall into place. When you get
to the last triangle there will be a crossing of a strip that the last triangle can tuck into,
and your model will be complete and stable.

If you have trouble because the strip doesn't fall into place there are two frequent
explanations. The first (and most likely) reason is that you have not folded the crease
lines firmly enough. In that case all you need to do is crease them again with more
gusto! The second possible reason is that the strip seems too short to reach around the
model and tuck in. This may be remedied by trimming a tiny amount from each edge of
the strip.

An analogous construction may be made for the triangular dipyramid shown in Figure
5(c). This model can be made from a strip of 19 equilateral triangles. Knowing what the
finished model should look like and that you should begin by forming the top three
faces with one end of the strip should be sufficient hints.

You may discover that you can construct each of these dipyramids with fewer triangles,
but we chose the construction that produces the most balanced model. You will note
that both of these constructions place precisely three thicknesses of paper on each face,
except where the last triangle tucks in (producing four thicknesses). In both cases, you
could remedy this small defect by cutting off half of the first and last triangle on the
strip.

Now let us turn to the Platonic Puzzies.

Figure 6: 1) Tetrahedron (2 strips)
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2) Hexahedron (Cube) (3 strips)

3) Octahedron (4 strips)

4) Icosahedron (5 strips)

5) Dodecahedron (6 strips, 3 of each kind).
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Figure 6 shows a typical puzzle piece (or strip) next to each solid, and tells you how
many are needed. In each case the puzzle is this: take the required strips and braid them
together to from the required solid in such a manner that

(a) the same area is visible on each strip, and
(b) all ends are tucked in.

The tetrahedron, octahedron, and icosahedron all involve strips obtained from the
D'U'-folding procedure. All you need to do is prepare the pattern pieces as we
described above and try to assemble the models. You may note that, on all of these
models, if you take into account the coloring of the surface, they will have lost some of
the symmetry you would expect to find on Platonic Solids; that is, not all edges will
look the same. For some edges the two adjacent faces will have the same color but, for
other edges, the two adjacent faces will have different colors. (We will propose another
type of construction that corrects this defect in Section 5). If you manage to get all three
of these together without any hints you are really an expert! If you have trouble getting
your models together check the hints given in Section 4.

The hexahedron (cube) pattern pieces may be made by making exact folds on the tape.
All that you need to remember is that if you fold the tape directly back on itself you will
produce an angle of precisely 7/2, and if you bisect that angle you will know exactly
where to fold the tape back on itself to produce a square. Once you have one square on
the tape you may then simply fold the tape back and forth, accordion style, on top of
this square to produce the required number of squares. There are actually two ways to
braid these three pieces together to satisfy the conditions for the puzzle. One of these
ways produces a cube with opposite faces the same color and the other way produces a
cube with certain pairs of adjacent faces the same color. From the point of view of
symmetry the first is more symmetric because, on that model, all edges abut two faces
of different colors. If you have trouble assembling this model check the hints given in
Section 4.

The dodecahedron involves strips obtained from the D*U*-folding procedure. But notice
on the final pattern piece you should only fold the pattern piece firmly along the short
crease lines (ignoring the long lines) after you have cut out each piece. We should tell
you that on this model four sections of each strip will overlap (for stability). It may also
be helpful to let you know that the strips go together in pairs and the construction is then
similar to that of the more symmetric cube you have constructed above — and, if
coloring is taken into account, the completed model loses a lot of the symmetry you
expect to see on a dodecahedron. You may now have enough hints, but if you have
difficulty consult Section 4.
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The diagonal cube involves four strips each containing 7 right isosceles triangles as
shown in Figure 7(a). The strips for these pieces may be folded by the exact procedure
similar to that described above for the cube in the Platonic Puzzles. Just remember that
this time you want to emphasize those crease lines that make an angle of /4 with the
edges of the tape. To assemble the cube you begin by laying out the four pieces as
shown in Figure 7(b), with the colored side of the paper not showing. You may wish to
put a small piece of tape in the exact center to hold the strips in position. Now, thinking
of the dotted square surrounding the center as the base of your cube, you begin to braid
the strips to make the vertical faces, remembering that each strip should go successively
over and under the strips it meets as it goes around the model. When you get to the top
face you will find that all the ends will tuck in to produce a very beautiful and highly
symmetric cube; indeed, none of the symmetry of the cube has been lost. You will
notice that every face has a different arrangement of four colors and that every vertex is
surrounded by a different arrangement of three colors.

(o}

{c)

Figure 7

The golden dodecahedron involves strips obtained from the D*U’-folding procedure.
But notice on the pattern pieces you should only fold the pattern piece firmly along the
long crease lines (ignoring the short lines) after you have cut out each piece. To
complete the construction of this model, begin by taking five of the strips and arranging
them, with the colors showing, as shown in Figure 8(b), securing them with paper clips
at the points marked with arrows. View the center of the configuration as the North
Pole. Lift this arrangement and slide the even-numbered ends clockwise over the odd
numbered ends to form the five edges coming south from the arctic pentagon. Secure
the strips with paper clips at the points indicated by crosses. Now weave in the sixth
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(equatorial) strip, shown shaded in Figure 8(c), and continue braiding and clipping,
where necessary, until the ends of the first five strips are tucked in securely around the
South Pole. Above all, keep calm, you can even take a break — the model will wait for
you! Just make certain that every strip goes alternately over and under each strip it
meets all the way around the model. When the model is complete (with the last ends
tucked in) you may remove all the paper clips and the model will remain stable. We
notice that this constructed dodecahedron is aesthetically very satisfying — more so than
the dodecahedron previously described. This is due to its amazing symmetry — none of
the possible symmetry has been lost.

Figure 8

Before giving you the hints for the remaining models we cannot resist showing you a
lovely use for the cube with three strips, the diagonal cube and the golden
dodecahedron. An interesting question® that has been asked by geometers (see [KW]) is
"How many disjoint pieces — both finite and infinite (or unbounded) — are formed by the
extended face planes® for each Platonic solid?" As it turns out we can use our braided
models to answer some of these questions in the case of the unbounded regions.

Let us use the ordinary cube to show how the braided models are useful. Notice that the
edges of the three strips used to create the braided model lie in 6 planes which interesect
each other to form a cube. Figure 9, suitably interpreted, shows that the extended face
planes of a cube partition space into 27 pieces. There is, of course, the cube itself, which
is bounded. Then come the unbounded regions. There are

* A question is always interesting to mathematicians if the answer is not obvious but they can see a possible
way to answer it.
® The planes in which the faces of a polyhedron lie are called the extended face planes of the polyhedron.
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(a) 6 unbounded square prisms from its faces,
(b) 12 unbounded wedges from its edges and
(c) 8 unbounded trihedral regions from its vertices.

Now if you examine your braided cube you will see that there are

(a) 6 square regions that are covered with precisely two thicknesses of paper,
(b) 12 small slits along the edges where there is just one thickness of paper and
(c) 8 tiny triangular holes at the vertices.

This observation gives us the clue as to how braided models may be useful more
generally in answering our question.

\J

(a)

Y

(b) -

Figure 9: Using the braided cube to count the unbounded regions created by the extended face planes of the cube.

What turns out to be true is that the braided models partition the surface of the
polyhedron into mutually disjoint sets of ‘polygons' where each polygon is covered by 0,
1 or 2 thicknesses of paper. The polygons where there are holes (O-thickness) define
unbounded polyhedral regions, the polygons which are narrow slits (1-thickness) define
unbounded wedges, and the polygons where the strips actually are crossing each other
(2 thicknesses) define unbounded prisms. The shapes of these unbounded regions may
vary with the braided model, but these general statements always hold.

If we are to be able to answer our question for the octahedron we need a braided model
with 4 strips so that their edges will define 8 face planes — and, of course, the braided
model should also have the same symmetry group as the octahedron. Fortunately the
diagonal cube satisfies our conditions (see [Math] concerning the duality of the cube
and octahedron). Figure 10 shows the octahedron with some of its face planes extended
so that you can see a typical finite region and typical unbounded regions of each type.
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The braided models don't help to count the bounded regions (in this case, however, we
can see from the part of Figure 10 labeled (a) that there is a tetrahedron on each face of
the original octahedron). The rest of the labels in Figure 10 indicate unbounded regions
and Figure 11 reproduces those regions as they are associated with the surface of the
diagonal cube. Thus, using Figure 11, we may now count the unbounded regions. They
are (using the labels in Figure 11):

(b) 6 unbounded tetrahedral regions from the holes in the center of the faces,

(c) 24 unbounded wedges from the 4 slits on each of the 6 faces,

(d) 8 unbounded trihedral regions from the vertices,

(e) 12 unbounded, prism-like regions from the crossings of the strips on the edges
comprising a total of 50 unbounded regions.

So the golden dodecahedron must
also be wuseful. In fact it is
composed of six strips and the
planes defined by the edges of
those strips intersect inside this
model to form a dodecahedron.
Thus the surface of the golden

dodecahedron can be used to see
that there are 122 unbounded
regions created by the extended
face planes of the dodecahedron.
You might like to try to count them
yourself using your golden
dodecahedron (or see [P] for more
details). Figure 10: Extending the face planes of an octahedron.

What about the icosahedron? Figure 11 shows how a model, braided from 10 straight
strips, may be made from the D2U2-tape that can be used to count the 362 unbounded
regions created by the extended face planes of the icosahedron (see [P] for more
details). We have not written down anywhere how to make the model shown in Figure
11, but we're sure the interested reader will be able to figure it out from what we have
said and the illustration. You may be asking yourself why we have slighted the
tetrahedron. The answer is that the tetrahedron does not have faces lying in opposite
parallel planes, so our models are not useful here. However, it is not difficult to imagine
extending the face planes of the tetrahedron and seeing that you have one finite region
(the tetrahedron) and 14 unbounded regions (4 from vertices, 6 from edges and 4 from
faces).
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()]

Figure 11: The use of the diagonal cube to visualise the unbounded regions formed by the extended face
planes of the regular octahedron.

g ——————

Figure 12: Strips whose edges define the extended face planes of an icosahedron lying on the surface of a
phantom dodecahedron.
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4. FURTHER HINTS FOR CONSTRUCTING THE PLATONIC PUZZLES

Tetrahedron: Lay one strip over the other strip (with the colors not showing) exactly as
shown in Figure 13(a). Think of the triangle ABC as the base of the tetrahedron; for the
moment the triangle ABC remains fixed. Then fold the bottom strip into a tetrahedron
by lifting up the two triangles labeled X and overlapping them so that C’ meets C, B’
meets B, and D’ meets D. Don’t worry about what is happening to the other strip as long
as it stays in contact with the bottom strip where the two triangles originally overlapped.
Now you will have a tetrahedron with three triangles sticking out from one edge.
Complete the model by wrapping the protruding strip around two faces of the
tetrahedron (with the color showing) and tucking in the last triangle so that it looks like
Figure 13(b).

Figure 13

Hexahedron (cube): First take one strip and clip it together so that the color is outside
and the end squares fit over each other. Do the same with a second strip. Slip one of
these over the other so that the holes of the cube are all covered and so that the
overlapping squares of the second strip do not cover any squares from the first strip, and
so that the paper clip on the first strip is covered as shown in Figure 14(a). Now slide
the third strip underneath the top square so that two squares from the third strip stick out
on both the right and left sides of the cube, as shown in Figure 14(b). Turn the model
upside down and tuck in the ends of this strip to form Figure 14(c). You may remove
the paper clips before you complete the construction; but, when you become really
adept, you'll find you don't need the paper clips at all.

e
NP

(@) ®)

©

Figure 14
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Octahedron: Begin with a pair of overlapping strips held together with a paper clip, as
indicated in Figure 15(a) (with the color visible). Fold these two strips into a double
pyramid by placing triangle a; under triangle A,, triangle a, under triangle A,, and
triangle b under triangle B. Secure the overlapping triangles b, B with a paper clip to
produce the configuration shown in Figure 15(b). Repeat this process with the other two
strips. Then place the second pair of braided strips over the first pair, as shown in Figure
15(c). When doing this, make certain the flaps with the paper clips are oriented
precisely as shown in the figure. Now, pick up the entire configuration and complete the
octahedron by moving the pyramids together as shown by the arrow marked 1.
Performing step 2 simply places the flap with the paper clip on it against a face of the
octahedron. In step 3 you wrap the remaining portion around the octahedron and tuck
the last flap (with a paper clip on it) inside the model. Again, when you become adept at
this process you will be able either to do it without paper clips, or, at least, to slip the
paper clips off just before you perform the last three steps. Actually this is just an
aesthetic consideration, since the paper clips won't be visible on the completed model.

(d)

Figure 15



SYMMETRY IN PRACTICE 425

Icosahedron: Label each of triangles on one of the strips with a 1 on the uncolored side
of the tape. Then label the next strip with a 2 on each of its triangles, the next with a 3
on each of its triangles, the next with a 4 on each of its triangles, and, finally, the last
with a 5 on each of its triangles.

Now lay the 5 strips out so that they overlap each other precisely as shown in Figure

16(a), making sure that the center 5 triangles form a shallow cup that points away from
you. You may wish to use some transparent tape to hold the strips in this position.

Now study the situation carefully before making your next move. You must bring the 10
ends up so that the part of the strip at the tail of the arrow goes under the part of the
strip at the head of the arrow (this means "under" as you look down on the diagram,
because we are looking at what will become the inside of the finished model). Half the
ends wrap in a clockwise direction, and the other end of each strip wraps in a
counterclockwise direction. What finally happens is that each strip overlaps itself at the
top of the model. In the intermediate stage it will look like Figure 16(b). At this point it
may be useful to put a rubber band (not too tight) around the emerging polyhedron just
below the flaps that are sticking out from the pentagon. Then lift the flaps as indicated
by the arrows in Figure 16(b) and bring them toward the center so that they tuck in as
shown in Figure 16(c).

The model is completed by first lifting flap 1 and smoothing it into position. Then you
should do the same with flaps 2, 3 and 4. Finally, flap 5 will tuck into the obvious slot
and you will have produced the model shown in Figure 16(d).

This model is, in the view of the authors, the most difficult of the 9 puzzles to construct
and it is not very stable. You might want to put a couple of lightweight rubber bands
around it to prevent it from falling apart when it is handled.

Figure 16 (a)
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Dodecahedron: Take two of the strips and secure them with a bobby pin as shown in
Figure 17(a) (with the colored side visible)’. Then make a bracelet out of each of the
strips in such a way that

(a) four sections of each strip overlap, and
(b) the strip that is under on one side of the bracelet is over on the other side. (This will
be true for both strips.)

Use another bobby pin to hold all four thicknesses of tape together on the edge that is
opposite the one already secured with a bobby pin.

Repeat the steps above with another pair of strips. You will then have two identical
bracelet-like arrangements. Slip one inside the other one as illustrated in Figure 17(b),
so that it looks like a dodecahedron with triangular holes on four of its faces.

Next take the last two strips and cross them precisely as
you did in Figure 17(a) (to do otherwise would destroy
some of the symmetry); then secure them with a bobby
pin. Carefully put two of the loose ends (either the top
two or the bottom two) through the top hole and pull
them out the other side so that the bobby pin lands on
CD. Then put the other two ends through the bottom
hole and pull them out the other side. Now you can tuck
in the loose flaps, but make certain to reverse the order
of the strips — that is, whichever one was on the bottom
at CD should be on the top when you do the final
tucking.

After you have mastered this construction you may
wish to try to construct the model with tricolored faces,
shown in Figure 17(e), which illustrates, rather vividly,
exactly how to inscribe the cube symmetrically inside
the dodecahedron. You may also note a similarity
between this construction and the cube of Figure 10.

Figure 17 (a)

" Notice that the long lines are shown in this figure but, as we said earlier, your strips should only be creased
on the short lines.
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5. CONSTRUCTING THE PERFECT TETRAHEDRON,
OCTAHEDRON AND ICOSAHEDRON

Recall how much pleasure we took in the fact that the diagonal cube and the golden
dodecahedron retained all their inherent symmetry. Generally speaking, braided models
lose some of the symmetry of the underlying geometric figure; indeed, our braided
tetrahedron, octahedron and icosahedron all lost some of the underlying geometric
symmetry. Thus it is natural to ask "Is it possible to braid the tetrahedron, octahedron
and icosahedron in such a way as to retain all the symmetry of the original polyhedron?"
We have recently discovered a way to do this. The problem was to design strips so that
three strips cross over each other to form each (triangular face) in a symmetric way.

Figure 18(b) shows a typical straight strip of 5 equilateral triangles with a slit in each
triangle from the top (or bottom) edge to (just past) the center®. The perfect tetrahedron
is constructed out of Figure 18(a) where you will see how the 3 strips are interlaced
initially. We leave the completion of the model as a challenge to you.

Figure 19(a) shows the layout of 3 strips for the beginning of the construction of the
perfect octahedron. We'll give you one more hint. When you use Figure 19(a) remember
that the strip shown below it in Figure 19(b) has to be braided into the figure above it.

Figure 18

® Theoretically the slit could go just to the center, but the model is then impossible to assemble. You need to
have some leeway for the pieces to be free to move during the process of construction — although they will
finally land in a symmetric position so that it looks as though the slit need not have gone past the center.
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A perfect icosahedron
may be constructed from
6 strips of this type having
11 triangles on each strip.
Over to you! But take
heart - these models take
several hours to construct.
Just to prove that they
really do exist we show
the photo of them in
Figure 20.

Figure 20
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Contributions to SYMMETRY: CULTURE AND SCIENCE are welcomed from the broadest international
circles and from representatives of all scholarly and artistic fields where symmetry considerations play an
important role. The papers should have an interdisciplinary character, dealing with symmetry in a concrete
(not only metaphorical!) sense, as discussed in “Aims and Scope” on the next page. The quarterly has a
special interest in how distant fields of art, science, and technology may influence each other in respect of
symmetry. The papers should be addressed to a broad non-specialist public in a form which would encourage
the dialogue between disciplines. .

Manuscripts may be submitted directly to the editors, or through members of the Board of ISIS-Symmetry.
Contributors should note the following:

= All papers and notes are published 1n English and they should be submitted in that language. The quarterly
reviews and annotates, however, non-English publications as well.

= In the case of complicated scientific concepts or theories, the intuitive approach is recommended, thereby
minimizing the technical details. New associations and speculative remarks can be included, but their tentative
nature should be emphasized. The use of well-known quotations and illustrations should be limited, while
rarely mentioned sources, new connections, and hidden dimensions are welcomed.

m The papers should be submitted either by e-mail attachment, or on (PC formatted) computer diskettes ( rtf
format preferred). Typewritten texts will not be rejected in the evaluation process, but the preparation of these
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m The papers are accepted for publication on the understanding that the copyright is assigned to ISIS-
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photocopy articles or to reuse published materials. Each author will receive a complimentary copy of the issue
where her/his article appeared.

m Papers should begin with the title, the proposed running head (abbreviated form of the title of less than 35
characters), the proposed section of the quarterly where the article should appear (see the list in the note
“Aims and Scope”), the name of the author(s), the mailing address (office or home), the electronic mail
address (if any), and an abstract of between 5 and 15 lines. A recent black-and-white photo, the biographic
data, and the list of symmetry-related publications of (each) author (max. the 5 most important items will be
printed in the biographic entry) should be enclosed; see the sample at the end.

m Only black-and-white, camera-ready illustrations (photos or drawings) can be used. Scanned illustrations
inserted in the electronic version are preferred. The required (approximate) location of the figures and tables
should be indicated in the main text by typing their numbers and captions (Figure 1: [text], Figure 2: [text],
Table I: [text], etc.), as new paragraphs. The figures, which may be slightly reduced in printing, should be
enclosed on separate sheets. The tables may be given inside the text or enclosed separately.

m It is the author's responsibility to obtain written permission to reproduce copyright materials

m Either the British or the American spelling may be used, but the same convention should be followed
throughout the paper.

m Subtitles (numbered as 1, 2, 3, etc.) and subsidiary subtitles (1.1, 1 1.1, 1.1.2, 1.2, etc ) can be used, without
over-organizing the text.

» The use of references is recommended. The citations in the text should give the name, year, and, if
necessary, page, chapter, or other number(s) in one of the following forms: ... Weyl (1952, pp. 10-12) has
shown...; or ... as shown by some authors (Coxeter et al., 1986, p. 9; Shubnikov and Koptsik 1974, Chap. 2;
Smith, 1981a, Chaps. 3-4; Smith, 1981b, Sec. 2.12; Smith, forthcoming). The full bibliographic description of
the references should be collected at the end of the paper in alphabetical order by authors' names; see the
sample. This section should be entitled References.
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the first one): Publisher, vii + 619 pp.; (further data can be added, e.g.,: 3" ed., 2 Vols., ibid., 1985, viii
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pagination), 110-119 (page numbers); B23, No. 1, 117-132 and 148 (for e-journals any appropriate
data).

Dissymmetrist, S. Z. (1989a) Chapter, article, symposium paper, or abstract title, [Abstract (if applicable)],
In: Editorologist, A.B. and Editorologist, C.D., eds., Book, Special Issue, Proceedings, or Abstract
Volume Title, [Special Issue (or) Symposium organized by the Dissymmetry Society, University of
Symmetry, San Symmetrino, Calif., December 11-22, 1971 (those data which are not available from
the title, if applicable)], Vol. 2, City: Publisher, 19-20 (for special issues the data of the journal).

Dissymmetrist, S. Z, ed. (1990) Dissimmetriya v nauke (title in origmal, or transliterated, form),
[Dissymmetry in science, in Russian with German summary], Trans. from English by Antisymmetrist,
B. W, etc.

[Symmetrist, W M.] (1989) Review of Title of the Reviewed Work, by S. Z. Dissymmetrist, etc. (if the review
has an additional title, then it should appear first; if the authorship of a work is not revealed in the
publication, but known from other sources, the name should be enclosed in brackets).

In the case of lists of publications, or bibliographies submitted to Symmetro-graphy, the same convention

should be used. The items may be annotated, beginning in a new paragraph. The annotation, a maximum of

five lines, should emphasize those symmetry-related aspects and conclusions of the work which are not
obvious from the title. For books, the list of (important) reviews, can also be added.

Sample of biographic entry
Name: Warren M. Symmetrist, Mathematician, (b. Boston, Mass., U.S.A., 1938).
Address: Department of Dissymmetry, University of Symmetry, 69 Harmony Street, San Symmetrino, Calif.
69869, U.S.A. E-mail: symmetrist@symmetry.edu .
Fields of interest: Geometry, mathematical crystallography (also omamental arts, anthropology - non-
professional interests in parentheses).
Awards: Symmetry Award, 1987; Dissymmetry Medal, 1989.
Publications and/or Exhibitions: List all the symmetry-related publications/exhibitions in chronological
order, following the conventions of the references and annotations. Please mark the most important
publications, not more than five items, by asterisks. This shorter list will be published together with the article,
while the full list will be saved in the data bank of ISIS-Symmetry.
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There are many disciplinary periodicals and symposia in various fields of art, science, and technology, but
broad interdisciplinary forums for the connections between distant fields are very rare. Consequently, the
interdisciplinary papers are dispersed n very different journals and proceedings. This fact makes the
cooperation of the authors difficult, and even affects the ability to locate their papers.

In our ‘split culture’, there is an obvious need for interdisciplinary journals that have the basic goal of building
bridges (‘symmetries’) between various fields of the arts and sciences. Because of the variety of topics
available, the concrete, but general, concept of symmetry was selected as the focus of the journal, since it has
roots in both science and art.

SYMMETRY: CULTURE AND SCIENCE is the quarterly of the INTERNATIONAL SOCIETY FOR THE
INTERDISCIPLINARY STUDY OF SYMMETRY (abbreviation: ISIS-Symmetry, shorter name: Symmetry Society).
ISIS-Symmetry was founded during the symposium Symmetry of Structure (First Interdisciplinary Symmetry
Symposium and Exhibition), Budapest, August 13-19, 1989. The focus of ISIS-Symmetry is not only on the
concept of symmetry, but also its associates (asymmetry, dissymmetry, antisymmetry, etc.) and related
concepts (proportion, thythm, invariance, etc.) in an interdisciplinary and intercultural context. We may refer
to this broad approach to the concept as symmetrology. The suffix -logy can be associated not only with
knowledge of concrete fields (cf., biology, geology, philology, psychology, sociology, etc.) and discourse or
treatise (cf., methodology, chronology, etc.), but also with the Greek terminology of proportion (cf., logos,
analogia, and their Latin translations ratio, proportio)

The basic goals of the Society are

(1) to bring together artists and scientists, educators and students devoted to, or interested in, the research
and understanding of the concept and application of symmetry (asymmetry, dissymmetry);

(2) to provide regular information to the general public about events in symmetrology;

(3) to ensure a regular forum (including the organization of symposia, congresses, and the publication of a
periodical) for all those interested in symmetrology.

The Society organizes the triennial Interdisciplinary Symmetry Congress and Exhibition (starting with the
symposium of 1989) and other workshops, meetings, and exhibitions. The forums of the Society are informal
ones, which do not substitute for the disciplinary conferences, only supplement them with a broader
perspective.
The Quarterly - a non-commercial scholarly journal, as well as the forum of ISIS-Symmetry - publishes
original papers on symmetry and related questions which present new results or new connections between
known results. The papers are addressed to a broad non-specialist public, without becoming too general, and
have an interdisciplinary character in one of the following senses:

(1) they describe concrete interdisciplinary ‘bridges’ between different fields of art, science, and technology
using the concept of symmetry;

(2) they survey the importance of symmetry in a concrete field with an emphasis on possible ‘bridges’ to
other fields.

The Quarterly also has a special interest in historic and educational questions, as well as in symmetry-related
recreations, games, and computer programs.

The regular sections of the Quarterly:

m Symmetry: Art & Science (papers classified as humanities, but also connected with scientific questions)

u Symmetry: Science & Art (papers classified as science, but also connected with the humanities)

= Symmetry in Education (articles on the theory and practice of education, reports on interdisciplinary
projects)

There are also additional, non-regular sections.

Both the lack of seasonal references and the centrosymmetric spine design emphasise the international charac-
ter of the Society; to accept one or another convention would be a ‘symmetry violation’. In the first part of the
abbreviation ISIS-Symmetry all the letters are capitalized, while the centrosymmetric image ;SIS! on the
spine is flanked by ‘Symmetry’ from both directions. This convention emphasises that ISIS-Symmetry and its
quarterly have no direct connection with other organizations or journals which also use the word Isis or ISIS.
There are more than twenty identical acronyms and more than ten such periodicals, many of which have
already ceased to exist, representing various fields, including the history of science, mythology, natural
philosophy, and oriental studies. ISIS-Symmetry has, however, some interest in the symmetry-related
questions of many of these fields.
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