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Visualization of geometric forms has been realized for centuries using two-dimensional
representations on paper. This type of representation works well for two-dimensional
shapes but is limited for three-dimensional forms. A two-dimensional representation is
often only one of the many views necessary for the complete visual understanding of a
three-dimensional form. Orthographic projections such as plan and elevation views are
not sufficient to visualize complex shapes. Physical models provide a better
understanding of three-dimensional forms (Cundy and Rollet, 1961) but they are
cumbersome to construct and limited by size; sometimes a form should be seen from its
inside for a complete comprehension of its spatial characteristics. Furthermore, the
materials used to construct the model often distract from the properties of the “ideal”
shape as geometrically defined.

Computer graphics has revolutionized the visualization process and the realization of
models. As with physical models, electronic models can be visualized from any
viewpoint at any position and distance, but are not limited by size and can be seen from
inside as well outside.

The images shown in the each of the illustrations represent top, frontal and perspective
views of computer generated models of regular polyhedra as seen from the outside;
some of the models are also represented as viewed from the inside.
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COMPUTER-AIDED DESIGN AND VISUALIZATION

Beyond its potential for visualization, the computer offers the possibility of generating
electronic models using computer-aided design (CAD) software. This type of computer
graphics application offers a quite specific data structure, characterized by the use of
instances (Bertol, 1994). An instance can comprise any of the geometric entities, which
can be generated in CAD with associated parameters such as position, scale, and
rotational angle. These parameters are related to the other main engine for the
development of a computer model, that represented by the geometric transformations
(Bertol, 1994). In a CAD model each element/part subjected to repetition can be
purposefully defined as instance. A model made of instances focuses on the simulated
shape as a whole comprised of parts.

The content of an instance can be redefined with different geometric elements while the
parameters associated with it are conserved. The change of content in one instance
propagates to all the other instances bearing the same name. The redefinition of
instances in a model can generate completely different geometric characteristics even if
the spatial and symmetry relations between the elements defined as instances are
conserved. A model made of instances can therefore “evolve” in completely different
forms which have in common the symmetry of the initial configuration: e.g. a row of
triangles with a side of 5" at a distance of 9" can be transformed into a row of spheres
with a radius of 3". The use of instancing is particularly effective in the case of forms
strongly characterized by symmetry, such as the regular polyhedra.

REGULAR POLYHEDRA AND SYMMETRY

The number of possible regular convex (two-dimensional) polygons - triangle, square,
pentagon, hexagon, etc. - is infinite. Conversely the number of the analogous entities -
regular polyhedra - in three-dimensional space is limited to five: tetrahedron,
octahedron, icosahedron, cube and dodecahedron. The regular polyhedra are also called
the Platonic solids, after the philosopher Plato (IV century B.C.), who thoroughly
discussed the characteristics of these solids in his dialogue Timaeus (Plato, 1965). Many
artists and mathematicians through the centuries have been fascinated with the regular
polyhedra.

In each regular polyhedron all the vertices, edges and faces are equivalent, and the faces
are regular polygons (Hilbert and Cohn-Vossen, 1952). The name of the polyhedron
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expresses the number of faces. The definition of each solid is therefore given by the
type and the number of faces, edges, and vertices as well as their position and relations
in three-dimensional space.

POLYHEDRON VERTICES EDGES FACES EDGES PER | EDGES PER
FACE VERTEX

TETRAHEDRON 4 6 4 3 3

CUBE 8 12 6 4 3

OCTAHEDRON 6 12 8 3 4

DODECAHEDRON 20 30 12 5 3

ICOSAHEDRON 12 30 20 3 5

In the present discussion the emphasis is on the symmetric structure specific to each
polyhedron. The regular polyhedra represent the possible regular symmetric
configurations in three-dimensional space (Weyl, 1952); rotational symmetry about the
center of the polyhedron rules the position of each vertex, edge and face.

The polyhedron significance goes beyond its geometric shape since it becomes a
definition of compositional rules. The models shown in the illustrations follow this
approach: different types of shapes replace the geometric elements defining the
polyhedron, which becomes a schematic diagram embodying its potential evolutions.

POLYHEDRA AND INSTANCES

Each of the geometric elements inherent to the architecture of a regular polyhedron -
vertices, edges and faces - can be defined as instance, characterized by a position and a
rotation angle relative to the center of the polyhedron. The creation of a CAD database
defining a polyhedron exemplifies a situation where the model definition based on the
symmetry relations between elements is pregnant of many different possible
transformations. The evolutions - as defined in previous sections - for each polyhedron
depict possible formal transformations involving the change of geometric characteristics
while keeping the spatial relations between faces, edges and vertices.

In the evolutions of the models of polyhedra shown in the illustrations, the geometric
entities which make the original polyhedra are completely transformed. The evolved
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model, in some cases, does not resemble a polyhedron any longer. While the contents of
the instances are changed, the symmetry relations are kept. The numbers of faces, edges
and vertices defining each polyhedron are conserved as well.

The definition of the elements which make a polyhedron in terms of instances bridges
the realm of ideal geometry, made of mere geometric entities, such as points, lines and
planes, to the realm of constructable realizations, made of physical materials which are
subject to many constraints. For example, the polygons defining the faces of the
polyhedra can be assigned a thickness, or similarly, the edges can evolve from a line to
a cylinder or prism, changing their geometry characteristics of two-dimensional and uni-
dimensional entity to three-dimensional objects assimilable to physical materials.

EVOLUTIONS OF THE REGULAR POLYHEDRA

One of the simplest evolutions is the transformation of each polyhedron into its stellated
match (Kepler, 1619). In this transformation the faces defining the polyhedron are
replaced by pyramids whose base is identical with the polygon which define each face
of the polyhedron.

The “open” polyhedra, already illustrated by Leonardo da Vinci (Pacioli, 1509), can
easily be evolved from the basic polyhedra by replacing the edges with prismatic
elements. In this type of polyhedra the definition of enclosure, present in the regular
polyhedra, no longer exists.



DIGITAL EVOLUTIONS FOR REGULAR POLYHEDRA 293

J

Further evolutions are possible from the basic models of the regular polyhedra by
replacing vertices, edges and faces, with a variety of forms resembling natural and man-
made elements. A well known example is Haeckel's Kunstformen der Natur, where
many illustrations of natural forms, such as protozoa, sponges, starfishes and several
plants, clearly resemble the regular polyhedra (Haeckel, 1974). In this type of
“evolution”, vertices, edges and faces completely loose their geometric meaning,
assuming complex formal characteristics.

Beyond the stellated and open polyhedra evolutions, the models shown in the
illustrations include two additional types of evolutions. In some of the polyhedra
evolutions, such as those shown for the tetrahedron, cube and octahedron, the redefined
geometric elements are assimilated to physical elements: vertices are replaced by joints
and edges by bars. This type of model can bring insights about their physical
construction and can be purposefully used to represent and investigate space frame
structure.

In the other models derived by the cube and octahedron, vertices are replaced by
revolution surfaces, generated by the rotation of a circular arc around the axis defined
by the original vertex and the center of the polyhedron. The re-defined faces connecting
the revolution surfaces create interesting enclosures: the relationship between inside and
outside is completely transformed from that of the original polyhedron.

Other shapes represent ideal, gravityless structures, such as the model evolved from the
dodecahedron, where vertices have been replaced by space frame towers. Both of the
additional models derived by the icosahedron resemble spaceship architectures: in one
model trussed arches replaces the edges while in the other the original vertices evolve in
helices.

The digital models shown in the illustrations represent only some of the unlimited
number of models which can be derived from the regular polyhedra. The potential
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presented by electronic models can offer insights in the investigation of symmetric
configuration, offering a contemporary interpretation of the regular polyhedra, which
have continued fascinating scientist and artist for thousands of years.
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