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Abstract: This paper provides modelling tools for formal systems design in the field of
information and physical systems. The concept and method of incursion and hyperin-
cursion are.firstly applied to the Fractal Machine, an hyperincursive cellular automata
with sequential computations with exclusive OR where time plays a central role. Simu-
lations will show the generation of fractal patterns. The computation is incursive, for
inclusive recursion, in the sense that an automaton is computed at the future time t+ 1 in

function of its neighbour automata at the present and/or past time steps but also at the
future time t+ 1. The hyperincursion is an incursion when several values can be gener-
ated at each time step. External incursive inputs cannot be transformed to recursion.
This is really a practical example of the Final Cause of Aristotle. But internal incursive
inputs defined at the future time can be transformed to recursive inputs by self-reference
defining then a self-referential system. A particular case of self-reference with the Frac-
tal Machine shows a non deterministic hyperincursive field The concepts of incursion
and hyperincursion can be related to the theory of hypersets where a set includes itself
Secondly, the incursion is applied to generate fractals with different scaling symmetries.
This is used to generate the same fractal at different scales like the box counting method
for computing a fractal dimension. The simulation of fractals with an initial condition
given by pictures is shown to be a process similar to a hologram. Interference of pic-
tures with some symmetry gives rise to complex patterns. This method is also used to
generate fractal interlacing. Thirdly, it is shown that fractals can also be generated
from the digital equations of diffusion and wave, that is to say from the modulo N of
their.finite difference equations with integer coefficients.

1. INTRODUCTION
The recursio~ consists of the computation of the future value of the variable vector X(t+l)
at time t+l from the values of these variables at present and/or past times, t, t-l, t-2 ....by
a recursive function :

X (t+ 1) =f(X(t), X(t-1) .....p)

where p is a command parameter vector. So, the past always determines the future, the
present being the separation line between the past and the future.
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Starting from cellular automata, the concept of Fractal Machines was proposed in which
composition rules were propagated along paths in the machine frame. The computation
is based on what I called "INclusive reCURSION", i.e. INCURSION (Dubois, 1992a-
b). An incursive relation is defined by:

X(t+l) =f(..., X (t+l), X(t), X(t-1) .....p)

which consists in the co~nputation of the values of the vector X(t+l) at time t+l from the
values X(t-i) at time t-i, i=1, 2 .... , the value X(t) at time t and the value X(t+j) at time t+j,
j=l, 2, .... in function of a command vector p. This incursive relation is not trivial because
future values of the variable vector at time steps t+l, t+2 .... must be known to compute
them at the time step t+ 1.

In a similar way to that in which we define hyper recursion when each recursive step
generates multiple solutions, I define HYPERINCURSION. Recursive computational
transformations of such incursive relations are given in Dubois and Resconi (1992, 1993a-
b).
I have decided to do this for three reasons. First, in relativity theory space and time are
considered as a four-vector where time plays a role similar to space. If time t is replaced by
space s in the above definition of incursion, we obtain

X(s+ l) =f( ..., X(s+ 1), X(s), X (s-l) .....p)

and nobody is astonished: a Laplacean operator looks like this. Second, in control theory,
the engineers control engineering systems by defining goals in the future to compute their
present state, similarly to our haman anticipative behaviour (Dubois, 1996a-b). Third, I
wanted to try to do a generalisation of the recursive and sequential Turing Machine in
looking at space-time cellular automata where the order in which the computations are
made is taken into account with an inclusive recursion.

We have already proposed some methods to realise the design of any discrete systems
with an extension of the recursion by the concept of incursion and hyperincursion based
on the Fractal Machine, a new type of Cellular Automata, where time plays a central
role. In this framework, the design of the model of any discrete system is based on in-
cursion relations where past, present and future states variables are mixed in such a way
that they define an indivisible wholeness invariant. Most incursive relations can be
transformed in different sets of recursive algorithms for computation. In the same way,
the hyperincursion is an extension of the hyper recursion in which several different
solutions can be generated at each time step. By the hyperincursion, the Fractal Machine
could compute beyond the theoretical limits of the Turing Machine (Dubois and
Resconi, 1993a-b). Holistic properties of the hyperincursion are related to the Golden
Ratio with the Fibonacci Series and the Fractal Golden Matrix (Dubois and Resconi,
1992). An incursive method was developed for the inverse problem, the Newton-
Raphson method and an application in robotics (Dubois and Resconi, 1995). Control by
incursion was applied to feedback systems (Dubois and Resconi, 1994). Chaotic recur-
sions can be synchronised by incursion (1993b). An incursive control of linear, non-
linear and chaotic systems was proposed (Dubois, 1995a, Dubois and Resconi, 1994,
1995). The hyperincursive discrete Lotka-Voiterra equations have orbital stability and
show the emergence of chaos (Dubois, 1992). By linearisation of this non-linear system,
hyperincursive discrete harmonic oscillator equations give stable oscillations and dis-
crete solutions (Dubois, 1995). A general theory of stability by incursion of discrete
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equations systems was developed with applications to the control of the numerical insta-
bilities of the difference equations of the Lotka-Volterra differential equations as well as
the control of the fractal chaos in the Pearl-Verhulst equation (Dubois and Resconi,
1995). The incursion harmonic oscillator shows eigenvalues and wave packet like in
quantum mechanics. Backward and forward velocities are defined in this incursion
harmonic oscillator. A connection is made between incursion and relativity as well as
the electromagnetic field. The foundation of a hyperincursive discrete mechanics was
proposed in relation to the quantum mechanics (Dubois and Resconi, 1993b, 1995).

This paper will present new developments and will show that the incursion and hyperin-
cursion could be a new tool of research and development for describing systems where
the present state of such systems is also a function of their future states. The anticipatory
property of incursion is an incremental final cause which could be related to the Aristo-
telian Final Cause.

2. INCURSION AND ARISTOTLE’S FINAL CAUSE
Aristotle identified four explicit categories of causation: 1. Material cause; 2. Formal
cause; 3. Efficient cause; 4. Final cause. Classically, it is considered that modem physics
and mechanics only deal with efficient cause and biology with material cause. Robert
Rosen (1986) gives another interpretation and asks why a certain Newtonian mechanical
system is in the state (phase) Ix(t) (position), v(t) (velocity)]:

1. Aristotle’s "material cause" corresponds to the initial conditions of the sys-
tem [x(0), v(0)] at time t=0.

2. The current cause at the present time is the set of constraints which convey
to the system an "identity", allowing it to go by recursion from the given
initial phase to the latter phase, which corresponds to what Aristotle called
formal cause.

3. What we call inputs or boundary conditions are the impressed forces by the
environment, called efficient cause by Aristotle.

As pointed out by Robert Rosen, the first three of Aristotle’s causal categories are tacit
in the Newtonian formalism: "the introduction of a notion of final cause into the Newto-
nian picture would amount to allowing a future state or future environment to affect
change of state in the present, and this would be incompatible with the whole Newto-
nian picture. This is one of the main reasons that the concept of Aristotelian finality is
considered incompatible with modern science.
In modern physics, Aristotelian ideas of causality are confused with determinism, which
is quite different.... That is, determinism is merely a mathematical statement of func-
tional dependence or linkage. As Russell points out, such mathematical relations, in
themselves, carry no hint as to which of their variables are dependent and which are
independent."

The final cause could impress the present state of evolving systems, which seems a key
phenomenon in biological systems so that the classical mathematical models are unable
to explain many of these biological systems. An interesting analysis of the Final Causa-
tion was made by Emst von Glasersfeld (1990). The self-referential fractal machine
shows that the hyperincursive field dealing with the final cause could be also very im-
portant in physical and computational systems. The concepts of incursion and hyperin-
cursion deal with an extension of the recursive processes for which future states can
determine present states of evolving systems. Incursion is defined as invariant func-
tional relations from which several recursive models with interacting variables can be
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constructed in terms of diverse physical structures (Dubois & Resconi, 1992, 1993b).
Anticipation, viewed as an Aristotelian final cause, is of great importance to explain the
dynamics of systems and the semantic information (Dubois, 1996a-b). Information is
related to the meaning of data. It is important to note that what is usually called Informa-
tion Theory is only a communication theory dealing with the communication of coded
data in channels between a sender and a receptor without any reference to the semantic
aspect of the messages. The meaning of the message can only be understood by the
receiver if he has the same cultural reference as the sender of the message and even in
this case, nobody can be sure that the receiver understands the message exactly as the
sender. Because the message is only a sequential explanation of a non-communicable
meaning of an idea in the mind of the sender which can be communicated to the receiver
so that a certain meaning emerges in his mind. The meaning is relative or subjective in
the sense that it depends on the experiential life or imagination of each of us. It is well-
known that the semantic information of signs (like the coding of the signals for traffic)
are the same for everybody (like having to stop at the red light at a cross roads) due to a
collective agreement of their meaning in relation to actions. But the semantic informa-
tion of an idea, for example, is more difficult to codify. This is perhaps the origin of
creativity for which a meaning of something new emerges from a trial to find a meaning
for something which has no a priori meaning or a void meaning.

Mind dynamics seems to be a parallel process and the way we express ideas by language
is sequential. Is the sequential information the same as the parallel information? Let us
explain this by considering the atoms or molecules in a liquid. We can calculate the
average velocity of the particles from in two ways. The first way is to consider one
particular particle and to measure its velocity during a certain time. One obtains its mean
velocity which corresponds to the mean velocity of any particle of the liquid. The sec-
ond way is to consider a certain number of particles at a given time and to measure the
velocity of each of them. This mean velocity is equal to the first mean velocity. So there
are two ways to obtain the same information. One by looking at one particular element
along the time dimension and the other by looking at many elements at the same time.
For me, explanation corresponds to the sequential measure and understanding to the
parallel measure. Notice that ergodicity is only available with simple physical systems,
so in general we can say that there are distortions between the sequential and the parallel
view of any phenomenon. Perhaps the brain processes are based on ergodicity: the left
hemisphere works in a sequential mode while the right hemisphere works in a parallel
mode. The left brain explains while the right brain understands. The two brains are
complementary and necessary.

Today computer science deals with the "left computer". Fortunately, the informaticians
have invented parallel computers which are based on complex multiplication of Turing
Machines. It is now the time to reconsider the problem of looking at the "right com-
puter". Perhaps it will be an extension of the Fractal Machine (Dubois & Resconi,
1993a).

I think that the sequential way deals with the causality principle while the parallel way
deals with a finality principle. There is a paradox: causality is related to the successive
events in time while finality is related to a collection of events at a simultaneous time,
i.e. out of time.

Causality is related to recursive computations which give rise to the local generation of
patterns in a synchronic way. Finality is related to incursive or hyperincursive symmetry
invariance which gives rise to an indivisible wholeness, a holistic property in a dia-
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chronic way. Recursion (and Hyper recursion) is defined in the Sets Theory and Incur-
sion (and Hyperincursion) could be defined in the new framework of the Hypersets
Theory (Aczel, 1987; Barwise, Moss, 1991).

If the causality principle is rather well acknowledged, a finality principle is still contro-
versial. It would be interesting to re-define these principles. Causality is defined for
sequential events. If x(t) represents a variable at time t, a causal rule x(t+l) = f(x(t))
gives the successive states of the variable x at the successive time steps t, t+l, t+2, ...
from the recursive functionf(x(t)), starting with an initial state x(0) at time t=0. Defined
like this, the system has no degrees of freedom: it is completely determined by the func-
tion and the initial condition. No new things can happen for such a system: the whole
future is completely determined by its past. It is not an evolutionary system but a devel-
opmental system. If the system tends to a stable point, x(t+l) = x(t) and it remains in this
state for ever. The variable x can represent a vector of states as a generalisation.

In the same way, I think that determinism is confused with predictability, in modern
physics. The recent fractal and deterministic chaos theory (Mandeibrot, 1982; Peitgen,
Ji~rgens, Saupe, 1992) is a step beyond classical concepts in physics. If the function is
non-linear, chaotic behaviour can appear, what is called (deterministic) chaos. In this
case, determinism does not give an accurate prediction of the future of the system from
its initial conditions, what is called sensitivity to initial conditions. A chaotic system
loses the memory of its past by finite computation. But it is important to point out that
an average value, or bounds within which the variable can take its values, can be known;
it is only the precise values at the successive steps which are not predictable. The local
information is unpredictable while the global symmetry is predictable. Chaos can pres-
ents a fractai geometry which shows a self-similarity of patterns at any scale.

A well-known fractal is the Sierpinski napkin. The self-similarity of pattems at any scale
can be viewed as a symmetry invariance at any scale. An interesting property of such
fractals is the fact that the final global pattern symmetry can be completely independent
of the local pattern symmetry given as the initial condition of the process from which the
fractal is built. The symmetry of the fractal structure, a final cause, can be independent
of the initial conditions, a material cause. The formal cause is the local symmetry of the
generator of the fractal, independently of its material elements and the efficient cause
can be related to the recursive process to generate the fractal. In this particular fractal
geometry, the final cause is identical to the final cause. The efficient cause is the making
of the fractal and the material cause is just a substrate from which the fractal emerges
but this substrate doesn’t play a role in the making.

3. THE HYPERINCURSIVE FRACTAL MACHINE
A one-dimensional network of cellular automata (Feynman, 1982; Gardner, 1971; Schroe-
der, 1991; Weisbuch, 1989; Wolfram, 1994, Zuse, 1969) is represented by a vector of
automata states, each automaton state having an integer numerical value at the initial time
t=0. A set of rules defines how the states change at every clock time. A simple rule consists
of replacing the value of each automaton by the sum of itself and its left neighbour at each
clock time. Figure 1 shows a one-dimensional network of cellular automata giving rise to
the Pascal triangle. The recursive model of the Pascal triangle network is

(1) X(n, t+l) =X(n, t) + X(n-l, t)
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with t=0, 1, 2 .... and n=l, 2, ..., starting with initial conditions X(n, 0), n=l, 2 .... at time
t=0 and boundary conditions X(0, t) at each time step t= 1, 2 ....

n=O 1 2 3 4 5 6 7 8
t=O 0 1 0 0 0 0 0 0 0
t=l 0 1 1 0 0 0 0 0 0
t=2 0 1 2 1 0 0 0 0 0
t=3 0 1 3 3 1 0 0 0 0
t=4 0 1 4 6 4 1 0 0 0
t=5 0 1 5 I0 i0 5 1 0 0
t=6 0 1 6 15 20 15 6 1 0
t=7 0 1 7 21 35 35 21 7 1
t=8 0 1 8 28 56 70 56 28 8

Figure h The Pascal triangle generated by the recursive eq. 1

The recursive equation 1 can be reversed in replacing t+l by t-I

(la) X(n,t-1)=X(n,t)+X(n-l,t)

In making a time translation, replacing t by t+l, one obtains

(lb) X(n, t+l) =X(n, t))-X(n-1, t+l)

This eq. lb can be computed in an incursive way, that is to say in a sequential order, in
giving initial conditions X(n, 0) and boundary conditions X(0, t+l) at the future time t+l,
for each time t-=0, 1, 2 .... It is absolutely impossible to build a real physical systems
governed by such an equation because" How to give to the system the boundary condi-
tions with inputs defined at the future time step t+l ? ". It will be shown below in this
paper that such incursive system can work in practice if the boundary conditions are zero
(no inputs) or the system defined itself its boundary conditions in a self-referential way
(for example, in defining periodical boundary conditions).

But some problems can appear: uncertainty or indecidability. In such a case, a solution
would be to define a purpose to the system so that the future inputs can be replaced by
inputs at the present time with a feed-back process as made in cybernetics and control
theory (Rosenblueth, Wiener, Bigelow, 1943; Van de Vijver, 1992).

With modulo N, the recursive eq. (1) becomes

(2) X(n, t+l) = (X(n, t) +X(n-1, t)) modN with t=0, 1, 2 .... and n=l, 2 .....

with initial conditions X(n, 0) and boundary conditions X(0, t). With N=2, the pattern is
given by the fractal Sierpinski napkin given in Figure 2a. In this recursion the present time
step always determines the next future time step, even for the boundary conditions X(0, t).

In the Fractal Machine (Dubois, 1992), the following incursive digital equation is de-
fined

(3) X(n, t+l) = (X(n, t) +X(n-1, t+l)) mod N with n=l, 2, ..., 8, and t=0, 1, 2 .....7
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where X(n, t) is the automaton state at position n and time t. The modulo with N=2 is
exclusive OR., XOR. The computation of eq. (3) with N=2, given at Figure 2b, gives rise
to a time reverse Sierpinski napkin (Dubois, 1990,1991). Let us remark that with the
modulo 2, the negative term in eq. lb is without importance.

n=O 1 2 3 4 5 6 7 8 n=O 1 2 3 4 5 6 7 8
t=O 0 1 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0
t=l 0 1 1 0 0 0 0 0 0 0 1 i 1 1 1 1 1 1
t=2 0 1 0 1 0 0 0 0 0 0 i 0 1 0 1 0 1 0
t=3 0 1 1 1 1 0 0 0 0 0 i 1 0 0 1 1 0 0
t=4 0 1 0 0 0 1 0 0 0 0 i 0 0 0 1 0 0 0
t=5 0 1 i 0 0 I 1 0 0 0 1 i 1 1 0 0 0 0
t=6 0 i 0 1 0 1 0 1 0 0 1 0 i 0 0 0 0 0
t=7 0 1 1 1 1 i 1 1 i 0 i 1 0 0 0 0 0 0
t=8 0 i 0 0 0 0 0 0 0 0 i 0 0 0 0 0 0 0

Figure 2a-b: Recursive Sierpinsk, napkin and incursive S~erpxnsh napkin

3.1. Self-Referential Fractal Machine

In the Fractal Machine, if it is natural to consider the successive time steps t in the in-
creasing order, it is also necessary to consider the successive computations in the in-
creasing order of the number n of automata which can be considered as an internal time.

Explicitly it is possible to define two times: an external time and an internal time. The
duration of the external time is the sum of the sequential computational internal times.
For n= 1, the future inputs X(0, t+l) must be defined at each time step in view of comput-
ing the automata X(n, t+l) as a final cause which controls the dynamics of the system. In
transforming eq. (3) in a quasi recursive equation system (Dubois, 1996a)

(3a) X(0, t+l) = external inputs =final cause
X(1, t+l) = (X(1, t) + X(0, t+l)) mod N
X(2, t+l) = (X(2, t) +X(1, t) +X(0, t+l)) rood N
X(3, t+l) = (X(3, t) +X(2, t) +X(1, t) +X(0, t+l)) modN

/;(8, t+l)= (X(7, t)+ X(6, t)+ ... +X(i, t) +X(0, t+l))mod N

it is explicitly seen that the external inputs must be defined in the future time like a final
causation which controls completely all the automata at the same time step in a holistic
way. Indeed the inputs X(0, t+l) are present in each automata at the same external time.
It is impossible to transform external inputs defined in the future time t+l to inputs
defined in the present time t. In this, we can say that we are dealing with a strict incur-
sive system. Thus the final causation is really the 4th causation which must be taken into
account in systems modelling as Aristotle had proposed. It seems also impossible to
construct a real working engineering system where real working external future inputs
would control its current present state. But it is possible to define internal future inputs
in considering self-referential systems.
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For example, in taking the following initial conditions X(n, 0)=0, n=0 .... ,8 and bound-
ary conditions X(0, t+l)=X(8, t+l), t=0, 1, 3, it is shown in Figure 2c that there are two
solutions at each time step.

n=O 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
t=O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
t=l 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
t=2 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1

Figure 2e Uncertainty in the self-referential fractal machine.

Indeed ifX(0, 1)=1 then X(8, 1)=1 and ifX(0,1)=0 then X(8,1)=0. Thus, this is an hyper-
incursive system because we have two different solutions at each time step. Moreover in
some cases, contradiction can appears. For example, starting with the following different
initial conditions at time t=0 given in Figure 2d in taking X(0, 1)=1 then X(8, 1)=0 and if
X(0, 1)=0 then X(8, 1)=1. This case could be resolved in deciding that X(0, t+l)=l-X(8,
t+l), then the first example will give a contradiction. The Fractal Machine can become
non deterministic or non algorithmic, what I suggest to call an HYPERINCURSIVE
FIELD where uncertainty (indecidability) or contradiction (exclusion principle) occur
(Dubois, 1996a).

n=O 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8
t=O    0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
t=l I 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

Figure 2d: Contradiction in the self-referential fractal machine.

4. GENERATION OF FRACTALS FROM INCURSIVE AUTOMATA

Lets us consider numerical simulations on computer of a few incursive automata.
Figures 3a-b give the simulation of the incursive automata given by eq. (3) for N=2 and
N=3, the initial conditions and boundary conditions are the same as in Figure 2-b.

Figure 3a: Simulation of hyperineursive
equation (3) with N=2.

Figure 3b: Simulation ofhyperincursive
equation O) with N=3.
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Figures 4a-b show an other Sierpinski napkin and a fractal pattern from the incursive rela-
tion

(4) X(n, t+l) = (X(n-1, t-l) + X(n-2, t+l)) mod 2

where n=2, 3, .. and t=l, 2 .... The boundary conditions are O’s. Two different initial
conditions at time t=l are considered:
(4a) X(n, 1)=0 for n=0,1,2 ....
(4b) X(1 l.p,1)=l forp=0,1,2 ....

Figure 4a: Simulation of hyperincursive equation
4 with initial condition 4a. Figure 4b: Simulation of hyperincursive equation

4 with initial condition 4b.

The following incursive relation depending on three automata

(5) X(n, t+l) = (X(n, t) + X(n-1, t+l) + X(n-1, 0) mod 3

with n=l, 2, ... and t=0, 1, 2, ... generates a square fractal given in Figure 5a with the
initial condition X(1, 0)=1 and the boundary conditions X(0, t)=0 for t=0, 1, 2 ....

Figure 5a: Simulation ofhyperincursive equation (5) giving a square fractal.
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Similarly with the Pascal Triangle, an incursive square with modulo 3 can be generated
as follows:

n=O 1 2 3 4 5 6 7 8 9
t=O 0 0 0 0 0 0 0 0 0 0
t=l 0 1 1 1 1 1 1 1 1 1
t=2 0 1 0 2 1 0 2 1 0 2
t=3 0 1 2 1 1 2 1 1 2 1
t=4 0 1 1 1 0 0 0 2 2 2
t=5 0 1 0 2 0 0 0 2 0 1
t=6 0 1 2 1 0 0 0 2 1 2
t=7 0 1 1 1 2 2 2 1 1 1
t=8 0 1 0 2 2 0 1 1 0 2
t=9 0 1 2 1 2 1 2 1 2 1

Figure 5b: Incursive square fractal generated by eq. 5, starting with X(1,1)= 1. This fractal
pattern ~s similar to the Sierpmski carpet in considering the O’s and non O’s pixels.

The time reverse of the eq. 5 is given by

(5a) X(n, t+l) = (X(n, t) -X(n-1, t+l)-X(n-1, t)) mod 3

which is again an incursive equation with the same terms with different signs. Contrary
to the Sierpinski gasket, the time reverse of this square fractal is not a recursive equa-
tion, but another incursive one (see Figure 5c). Let us recall that a definition of modulo
3 for negative values is: (-1) mod 3=2; (-2) mod 3=1.

n=O 1 2 3 4 5 6 7 8 9
t=O 0 0 0 0 0 0 0 0 0
t=l 0 1 2 1 2 1 2 1 2
t=2 0 1 0 2 2 0 1 1 0
t=3 0 1 1 1 2 2 2 1 1
t=4 0 1 2 1 0 0 0 2 1
t=5 0 1 0 2 0 0 0 2 0
t=6 0 1 1 1 0 0 0 2 2
t=7 0 1 2 1 1 2 1 1 2
t=8 0 1 0 2 1 0 2 1 0
t=9 0 1 1 1 1 1 1 1 1

0
1
2
1
2
1
2
1
2
1

Figure 5e: lncursive Sierpinski carpet starting from X(I,I)=I. The O’s are exactly at the same
posmon in the direct and reverse time incursive process.

The direct and reverse times patterns show a reflection symmetry for each space-time (n,
t) value. The symmetry of the whole pattern is the symmetry of the elementary part (the
generator), that is to say a self-similarity as shown in Figure 5d. Indeed, the symmetry is
space-time scale invariant in considering units in 3", m= 1, 2, 3 ....
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n=l 2 3 n=l 4 7

t=l 1 2 1 t=l 1 2 1
t=2 1     0     2 t=4 1 0 2
t=3 1     1     1 t=7 1 1 1

Figure 5d: Elementary square fractal as the generator and self-symmetry at space-time scale
Dn=3 and Dr=3, giving a self-similar pattern characterizing a fractal.

The two diagonals are identical and represent the Cantor set in one dimension:

1 0 1 0 0 0 1 0 1

Figure 5e: Cantor set in one dimension given by the diagonals of the square fractal.

Let us remark that the square fractal is similar to the Sierpinski carpet in the sense that
the zeros are at the same places. In the classical Sierpinski carpet all non zero values are
given by the same value 1. In this incursive square fractai, it is necessary to consider 1
and 2, that is to say the modulo 3. With modulo 2, equation 5 gives rise to a uniform
Euclidean pattern of dimension D=-2.

Figure 6 shows a Pentagon fi’actal generated by the incursive equation with four auto-
mata

Figures 6: Simulation of hyperincursive equation (6) showing a pentagon fractal.

(6) X(n, t+l) = (X(n, t) +X(n-1, t+l) +X(n-1, t-l) + X(n-2, t)) mod 2

with n=l, 2 .... and t=0, I, 2 .... with the initial condition X(1, 0)=1 and the boundary
conditions X(0, t)=0 for t=0, 1, 2 ....
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5. HOLOGRAPHIC GENERATION OF FRACTALS AT
DIFFERENT SCALES
Different patterns at different scales can be generated in the following way. Let us take
the following equation which will gives the Sierpinski gasket (N=2) in different space
scales:

(7) X (n, m, t+zlt) = (X (n, m, t) + X (n-An, m, t+At) + X (n, m-Am, t+dt)) mod N

with the first space parameter n=l, 2 .... , for each successive second space parameter m=l,
2, ... in function of the time t=0, 1, 2, ... The space steps An and Am define the scale at
which the fractal is generated, starting with an initial condition given by a picture. If the
picture is a black square

(7a) X(n, rn, 0) = 1 for n=l to An and m=l to Am

different Sierpinski gaskets are generated in one time step, t=0, with space steps given, by
example, by An--2p, p=0, 1,2, 3 and ZIm=2q, q=0, 1, 2, 3, as shown in Figures 7a-b-c-d.

d

Figures 7a-b-c-d

With this incursive process 7, the fractai dimension is easy to compute by "Box count-
ing" (see for example Peitgen, Jtirgens, Saupe, 1992). When p=q, with the same initial
condition 7a, the same fractals can be generated from
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(7b) X(n, m, t+At) = (X(n, m, t) + X(n-l, m, t+At) + X(n, m-l, t+At)) mod N

in several time steps given respectively by t=0 to 2p, p=0, I, 2, 3. This is possible by the
symmetry property of this Sierpinski fractal, that is to say the self-similarity at scales 2p.

Starting with an initial condition given a particular picture, instead of the black square, this
three-dimensional equation 7b was already simulated (see Dubois, 1992, 1995). The basic
evolution of the system is the multiplication of the initial picture given as initial condi-
tion through the whole frame with order/chaos transitions (the chaos transitions are
obtained for odd time steps) and then their fusion by interference. The process is similar
to a hologram but with the interference of the multiple identical pictures. Lets us show
that the same holographic effect can be obtained directly in one time step from eq. 7 in
taking, for example, the space steps At=l, At=15 and At=64 as shown in Figures 8b-c-d,
the Figure 8- giving the initial picture.

C

Figures 8a-b-e-d: Holographic generation of fractals with chaos-order transi-
tions
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The same method can be used for any other fractals. For example, from the following
equation

(8) X(n, m, t+At) = (X(n, m, t) + X(n-dn, m, t+At) + X(n, m-Am, t+At) + X(n-An, m-Am,
t+At)) rood N

the square fractal is obtained for N=3. For N=2, with a black square as initial condition,
the pattern is a uniform pattern of dimension D=-2. With an initial condition given by a
black and white pattern with a certain symmetry, the Figures 9a-b-c-d give several simu-
lations.

a

Figures 9a-b-e-d: Different patterns from eq. 8 with symmetrical initial condi-
tions.



DIGITAL DIFFUSION AND WAVE EQUATION SYSTEMS

6. GENERATION OF FRACTAL INTERLACING
Let us consider again eq. 7

(9) X (n, m, t+At) = (X (n, m, t) + X (n-An, m, t+At) + X (n, m-Am, t+At)) mod N

with the following initial condition

(gb)    X(n, 1, 0)=1 for n=An+l, An+2 ....and X(I, m, 0)=1 for m=Am+l, Am+2 ....

a Sierpinski interlacing can be generated as shown in Figure 10a, for p=q=3.

147

Figure 10a: Generation ofa Sierpinski interlacing.

This is really an interesting result because a Sierpinski gasket can be generated with a
unique line (this line is given by successive 1 ’s and has sometimes one value 0 in chang-
ing of direction) travelling in the space (n,m). The fractal dimension of this interlacing is
D=I for space scales (n, m) < (2p ,2q), and D=log3/log2 for larger scales.

With the same method, many other fractal interlacing can be generated.

Figure 10b was generated from the equation

(10) X(n,m,t+l)=(X(n,m,t)+X(n,m-4, t+l)+X(n-4, m-4, t+l)+X(n-8, m,
t+l)) mod 2
(10a) X(n, 1, 0)=1 for n=16, 17, 18 .... andX(1, m, 0)=1 for m=16, 17, 18 ...

and Figure 10c, from the equation

(11) X(n,m,t+l)=(X(n,m,t)+X(n,m-16, t+l)+X(n-12, m-16, t+l)+X(n-16,
m-12, t+l) + X(n-16, rn, t+l)) mod 2
(lla) X(n, 1, 0))=1 forn--16, 17, 18 .... andX(l, m, 0)=1 for m=16, 17, 18 ....
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Figure 10b: Fractal interlacing generated from
equation 10 with initial condition 10a

Figure 10c: Pentagon fractal ~nterlacing gener-
ated from equation 11 wtth initial condition 1 la

The conclusion of this section on interlacing is that the local rule given by incursive
equations give rise to a global pattern exhibiting only one simple line travelling in a very
complex way through the whole space.

7. FRACTALS FROM DIGITAL DIFFUSION EQUATION
Many physical, chemical or biological systems deal with diffusive reactions systems. Let
us show that fractal can be generated from a digital diffusion equation and that the in-
cursive diffusion equation can be algorithmically deterministic with a self-reference for
the inputs def’med at future time. Indeed, let us consider the one dimension diffusion
equation

(12) ~x(s, t)/~t = a.x(s, t) + D.82x(s, t)/~s2

With a discrete forward time derivative,

(13a) Df(x(s, t))=((x(s, t+At)-x(s, t))/At

the discrete diffusion equation

(12a) x(s, t+At)-(s, O =-a.dt.x(s, t) + D.dt.[x(s+As, t)-2.x(s, O + x(s-As, t)]/As2

gives unstable solution for integer parameters. In defining a diffusion difference equa-
tion modulo N, with a=0, D=I and At=As=l, the following "digital" diffusion equation
gives a fractal pattern shown in figure 11 a (Dubois, 1996a)

(12b) x(s, t+ l )=[-x(s, t) + x(s+ l, t) + x(s-1, t)]modN

The term "digital" was proposed by Konrad Zuse (1982). With a=l, D=I and At=As=l,
the following digital equation gives the Sierpinski fractal pattern given in Fig. lib
(Dubois, 1996a)

(12c) x(s, t+l) = [x(s+l, t) + x(s-1, t)] mod N
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S~

t=O
t=l

The numerical
They give very

01234567... 01234567...
00000000100000000
00000001110000000
00000010101000000
00000110101100000
00001000100010000
00011101110111000
00101000100010100
01101101110110110
i0000000100000001

00000000100000000
00000001010000000
00000010001000000
00000101010100000
00001000000010000
00010100000101000
00100010001000100
01010101010101010
i0000000000000001

Figure 11 a-b: Generation of fractal patterns by eqs. (10b-c) with N=2.

simulations of eq. 12b with N--2 and N=3 are given in Figures 12a-b.
special symmetries.

Figure 12~: Fractal generated from digital diffusion eq. 12b with N=2.
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inclusive or implicit recursion" I proposed. Indeed, it is the inclusion of each iterate in
the others which defines them in a self-reference way. In taking periodic boundary con-
ditions x(0, t+l)=x(S, t+l) and x(S+l, t+l)=x(1, t+l), the system defines itself the values
of the boundaries. For example, with a constant diffusion D=I and S=-3, we obtain, in
inverting the matrix A, the equation system 14d. The simulation of this system in Figure
13 shows that the convergence is very rapid, a few time steps. I think that this example is
a good one to explain "holistic" properties of self-referential system.

x(1, t+ 1) = x(1, 0/2 + x(2, t)/4 + x(3, t)/4
(14d) x(2, t+l) = x(2, 0/2 + x(3, t)/4 + x(l, t)/4

x(3, t+l) = x(3, 0/2 + x(1, 0/4 + x(2, 0/4

s= 1

t=O 1 0 0
t=l ~ ¼ ~
t=2 6/16 5/16 5/16
t=3 22/64 21/64 21/64

Figure 13. Simulation of self-referential diffusion equatton system 14d

Each automaton at time t+l is related to itself at the preceding time t and at the future
time t+l and to its direct space adjacent neighbours at the future time t+l. Due to the
self-reference of each automaton with its neighbours, it is possible to compute a new
transformed recursive system where now each automaton is computed in function of
itself only at the preceding time step but in function of all the automata of the system at
the preceding time.

This is really an important result which shows that an incursive holistic non-local prop-
erty comes from local interaction dealing with a recursive system depending on future
states.

With boundary conditions as external inputs x(0, t+l) and x(4, t÷l ), the system becomes
(Dubois, 1996a)

x(l, t+l) = [8.[x(1, t) + x(0, t+l)] + 3.x(2, t) + [x(3, t) + x(4, t+l)]]/21
(11 e) x(2, t+ I) = [3.x(2, t) + 9. [x(3, t)+x(4, t+ 1 )] + 3. Ix(l, t) + x(0, t+ 1)] ]/21

x(3, t+l) = [[x(3, t) +x(4, t+l)] + 3.[x(l, t)+x(0, t+l)]+8.x(2, t)]/21

We remark that the inputs are defined at the future time t+ 1 and they are present in the
three equations. It means that the inputs at the boundaries are transmitted instantane-
ously, that is to say during the time step 1, to each automata, and that their effect are
immediate because it is the same time step that the equations are computed. Why this
phenomenon? As the movement equations are defined in the future time by the back-
ward derivative, the inversion of the matrix A has the effect of mixing all the automata
together at the present time t (and the inputs at the future time t+l) to compute their
future values at time t+l. The inversion of the matrix A transforms a local incursive
system to a non-local recursive system, that is to say a folding of each automaton to the
other ones from the future time t+l to the present time t.

It must be pointed out that classical mathematical analysis deals with derivatives defined
for a unit time interval At tending to zero, so the backward and the forward derivatives
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are identical for derivable continuous systems. But the majority of physical systems
seem discrete and not continuous, for example, the molecules of all actual systems are
discrete entities and not a continuous medium. Newtonian mechanics is called the ra-
tional mechanics of the point, i.e. the dynamics of a Newtonian system are described by
differential equations where all the objects are represented by sets of points without
spatial dimension. It is well-known that Physicists have many mathematical problems
with classical mathematical analysis due to the appearance of infinities. Maurice Jessel
(1993) believed in the Non-Standard Analysis of Abraham Robinson as a first attempt to
avoid this problem. He thought also that a Finality Principle should be established after
the proposition of the French Nobel Prize winner Alfred Kastler.

So any evolving system can be defined at any time step t by its backward derivative
Ab(X(t)) or its forward derivative A~(X(t)): the forward derivative is related to the formal
causation of Aristotle and the backward derivative, to the final causation, because the
resulted equation takes into account the future time step t+At (Dubois, 1995). Final
causation is a potential causation because it is not yet realised. Let us remark that we
defined here an incremental final causation, changing at each time step. The principle of
finality or teleonomy defined classically deals with the final value of a variable when the
system reaches its stationary state, i.e. when it is no longer evolving but only developing.

A mathematical model theory of evolving systems would be helpful. If evolving systems
reach a stationary state (which can show a complex behaviour like a living system), the
mathematical model can be simplified to deal only with its stationary state: in this case,
no more information exists to explain how the system evolved to this state. It will be a
developing system rather than an evolving system. The development of organisms from
their birth to their death is a sub-class of the evolution of these organisms viewed at the
level of species evolution.

The interaction between a system and its environment can be viewed as a whole system
(Bohm, 1987). The environment views the system and the system views the (external)
environment. Anticipation seems to be the rule for physical structures in living systems:
how can we justify the fact that mathematical models are recursive processes based only
on past events? The anticipative nature of evolving systems is difficult to observe and to
model because it is included in the recursive model of the system (some incursive con-
trol can be transformed to a recursive control, although not always), i.e. in the formal
cause. It was shown with the hyperincursive field that it is not always possible to change,
mathematically, a final cause to a formal or efficient cause (Dubois, 1996a).

8. FRACTALS FROM DIGITAL WAVE EQUATION
Let us consider the one dimension wave equation

(15)    ,~2x(s, t)/c~t~ = -w~.x(s, t) + c~O~x(s, t)/Os~

where x(s, t) is the value of the wave at position s at time t, c the velocity and w is the
pulsation of oscillators. This differential equation can be replaced by the finite differ-
ence equation:

(15a) x(s, t+At) - 2.x(s, t) + x(s, t-At) = -w~.Ata.x(s, t) + c~.At~.[x(s+As, t) - 2.x(s, t) +
x(s-As, t)]/As~
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In taking As=l, At=l, c=l and w=l, the following digital wave equation is obtained [a
similar equation was studied with w=0 in Dubois, 1996b]:

(15b) x(s, t+l) + x(s, t-l) =-x(s, t) + x(s+l, t) + x(s-1, t)

In taking the modulo N of this equation, the following digital wave equation is obtained:

(15c) x(s, t+l) = [-x(s, t) -x(s, t-l) + x(s+l, t) + x(s-1, 0] mod N

The Figures 14a-b show the numerical simulations of this equation for N=2 and N=3,
with the initial condition

(15d) x(255, 0) = +1 and x(257, 0)= -1

where s=l to 512 and t=l, 2 .... The first one gives a particular new ffactal and the sec-
ond one is similar to a square fractal as shown previously in this paper.

Figure 14a: Fractal generated from the digital wave equation 15c with initial
condition 15d for N=2 A new type of fractal is generated.

Figure 14b: Fraetal generated from the digital wave equation 15c with initial
condition 15d for N=3. The fractal is similar to a square fractal, that ts to say

a Sierpinski carpet.
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9. CONCLUSION
This paper deals with the concept and method of incursion and hyperincursion to model
discrete systems. These are an extension of recursive processes where the computation
of future time steps only depends on present and past steps. With incursion and hyperin-
cursion, future time steps can be introduced to compute these future steps. Hyperincur-
sion is an incursion when several future values can be generated at each time step. These
can be interpreted as an incremental anticipation similar to the Aristotelian Final Causa-
tion. They are related to the definition of backward and forward time derivatives.

The method of incursion is a powerful tool for modelling discrete systems. With the
Fractal Machine, it is explicitly seen that the external inputs must be defined in the
future time like a final causation which controls completely all the automata at the same
time step in a holistic way. Indeed the inputs are present in each automata at the same
external time. It is impossible to transform external inputs defined in the future time t+l
to inputs defined in the present time t. In this, we can say that we are dealing with a strict
incursive system. Thus the final causation is really the 4th causation which must be
taken into account in systems modelling as Aristotle had proposed. It seems also impos-
sible to construct a real working engineering system where real working external future
inputs would control its current present state. But it is possible to de/me internal future
inputs in considering self-reference systems. The Fractal Machine can become non
deterministic or non algorithmic, what I suggest to call an HYPERINCURSIVE FIELD
where uncertainty (indecidability) or contradiction (exclusion principle) occur. It was
shown that the incursive diffusion equation can be algorithmically deterministic with a
self-reference for the inputs defined at future time by space periodic conditions. As the
movement equations are defined in the future time by the backward derivative, the
recursive transformation has the effect of mixing all the automata together at the present
time t in view of computing their future values at time t+l. The transformation of a non-
local incursive system to a local recursive system leads to a folding of each automaton to
the other ones from the future time to the present time. Several fractals were simulated
from incursive automata giving rise to square and pentagon symmetries. An interesting
case was given by the generation of fractal interlacing represented by only one travelling
line in the space.

It was shown that fractals can also be generated from the digital diffusion and wave
equations in using the modulo N of the finite difference equations.

Finally, the concepts of incursion and hyperincursion can be related to the theory of
hypersets which are defined as sets containing themselves. This theory ofhypersets is an
alternative theory to the classical set theory which presents some problems as the in-
completeness of G6del: a formal system cannot explain all about itself and some propo-
sitions cannot be demonstrated as true or false (undecidability). Fundamental entities of
systems which are considered as ontological could be explain in a non-ontological way
by self-referential systems.
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