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Abstract: Japanese mathematics in 17th-19th CC, called wasan, left many results. Those
results sometimes can be generalized and also be used to construct interesting patterns
or configurations. Several such examples will be given.

1 INTRODUCTION

The mathematics we will present here is one developed in Japan during the Edo period
(1603-1867). Its root is in Chinese mathematics and it developed rapidly during the Edo
era. It is called wasan (wa means "Japan" and san means "mathematics", respectively).
At the beginning of the Meiji period (1868-1911), the new government adopted Western
mathematics into its new school system, bringing a sudden end to the short life of wasan.
But the wasan tradition was still able to survive.

Results of wasan geometry belong to two- or three-dimensional Euclidean geometry.
These results concern elementary figures such as triangles, quadrangles, circles, spheres,
etc., where tangent circles are in the majority. The results are stated as problems with
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their final answers, but in most cases there is no explanation how such answers were
achieved.

There were two ways to publish the results in those days: One was in a book and the
other was on a wooden board called a sangaku. (The characters for san and gaku mean
"mathematics" and "framed board" respectively in Japanese in this case.) When people
found interesting problems, they would often write them down on a framed wooden
board and dedicated it to a shrine or a temple. Then the board would be hung under the
roof on the grounds. Most such problems were of a geometric nature and the figures
were beautifully drawn in color. But since there are so many of these wasan problems,
many still remain that have yet to be confirmed as correct.

Sometimes we can generalize about many of those problems. Furthermore, patterns or
configurations consisting of figures in these problems can often be discovered. In this
article we will demonstrate some of these patterns in the plane arising from problems
involving tangent circles in the old Japanese geometry.

2 A PATTERN BY FUJITA CONFIGURATIONS

Let ABCD be a parallelogram, E a point on the segment CD, F and G points on the
segments CE and DA respectively, and let FG meet BE at H. Suppose the quadrangles
ABHG, BCFH and DGHE have incircles ~a, ~’b, ~’d of radii a, b, d respectively. Also we
denote the incircle and its radius of the triangle FEH by ~’c. and c (see Figure 1). This
figure seems to have been first considered by Fujita in his book Seiy6 Samp6 (1781) in
the case where ABCD is a square. It seems appropriate to call this figure a Fujita
configuration. The problem is as follows:

Problem 1. In a Fujita configuration, where ABCD is a square, 2a+2b+2d+BE+FG+AB
be given, find AB.

The answer is AB = 12(2a+2b+2d+BE+FG+AB)/55. Though several problems
involving Fujita configuration where ABCD is a rhombus or a rectangle can be found in
some wasan books, they do not demonstrate any interesting properties of the
configuration. But there is one remarkable property (Okumura, 1987 and 1989b, see
Figures 2 and 3.):



Theorem 1. In a Fujita configuration a+c = b+d holds. If ABCD is a square then 
c:d:b:a = 1:2:3:4. Conversely, from a triangle with the inradius c and two exradii b and 
d,  we can get two Fujita configurations by setting the radius of the fourth circle equal to 
b td -c .  

Using Figure 2, we can construct a pattern in the entire plane so that the segments BE 
and FG are portions of some lines (see Figure 4) .  In this pattern we can superpose 
similar ones. Two similar patterns which are double and four times the size are drawn on 
the figure. 

Figure 1 Figure 2 
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3 PATTERNS OBTAINED BY UNIFYING SEVERAL PROBLEMS

Our patterns in this section are rather trivial. But it is worth-while considering them here
because they contain several figures that can be found in several wasan problems. A
typical problem is as follows:

Problem 2. Let ao be a circle of radius s with center O and a diameter AB, al and a2
circles with diameters AO and BO respectively. Then let 71, ?2, ?3 be distinct circles with
a radii r contained in ao tangent to ao and lying on the same side of AB, and ill, f12
distinct circles tangent to cq at O such that ?a touches a~ externally, fll (fl~   aa) touches
?~, 72 touches ill, f12 touches ?2, ?3 touches f12 and az externally. Show that s = 5r (see
Figure 5).

The problem is easily generalized as the following theorem (Okumura 1995a).

Theorem 2. Let a0, ax, a2, 71 and fl~ be as in Problem 2. Suppose that two families of
distinct circles ?z, ?3 ..... ?, with a radii r and f12, ]33 ..... 13, have been drawn such that ?~,

?i are tangent to ao and lying in ao on the same side of AB, and for any integer j (2
<j < i) ?j touches flj.~ and flj touches ?j. and ~z~ at O. Then define circles ?,+a ((:9i) with a
radius r and fl~+~ (~bi) such that ?,+~ touches 13, and ao internally and lies in the same side
of AB with ?a, and fli+l touches ?,+~ and al at O. Suppose that ?1, ?z ..... ?n and ill, 132 .....
13n have been drawn in this procedure and 13, = az, then we have s = (n+2)r.

B

Figure 5 Figure 6
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The theorem and our patterns in this section are good examples for demonstrating
inversive geomel!y technique. Now let us prove the theorem (see Figure 6 which shows
the case n = 4). The following simple proof is drawn from J. F. Rigby (Rigby 1995). Let
us add two more circles ~,~+~ and Y~÷z of radii r touching as internally at A and B and an
inner circle a’0 with center O and radius s-2r. There is an inversion with center O that
interchanges ~ and ~’o (the radius of inversion is ~ ). This inversion maps each
~,’, to itself and the circles through O to equally spaced n+l parallel lines (in the figure
and y’i are the images of a, and y, ). This proves Theorem 2.

Figure 7a Figure 7b

Figure 8a Figure 8b
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A problem corresponding to the case n = 3 can be found in a sangaku problem dated
1836 (Hirayama and Yamaki, 1967a). The problem was very popular and we could find
it in several sangaku books. The case n = 4 was published in 1828 (Kimura). Even a
problem discussing the case in which n is an arbitrary even number was already
proposed in a sangaku problem dated 1839 (Fukushima Wasan Study Association,
p. 120).

Using the figures corresponding to the cases n = ~t, 3, 5 .... of the theorem we can
generate a pattern shown in Figure 7a. This pattern can be obtained from a trivial
pattern, Figure 7b, which consists of evenly spaced parallel lines, and concentric circles
each of which touches two parallel lines, and small congruent circles touching them.
Inverting Figure 7b in one of the concentric circles, we can get Figure 7a. Similarly from
Figure 8b, we can get Figure 8a, which consists of the figures corresponding to the cases
n = 2, 4, 6 .... in the theorem.

It is easily seen that in Figures 7b and 8b we can choose points of intersections of
concentric circles and parallel lines so that they lie on a parabola with focus at the
common center. Since the image of a parabola by an inversion in a circle with its center
as its focus is a cardioid, we can choose sets of points of intersections of two circles so
that they lie on a cardioid in Figures 7a and 8a.

4 PATTERNS ARISING FROM A FIVE-CIRCLE PROBLEM

Our patterns in this section do not consist of figures that can be found in wasan
problems. But they were found when the author generalized the following problem,
which can be found in Yamamoto’s 1841 book and in Fukagawa and Pedoe, p. 7. as
well. The following is a brief description of the process of finding the patterns.

Problem 3. In the circle y of radius r let AB be a chord whose midpoint is M. The circle
Y0 of radius r0 (ro < r/2) touches AB at M and also touches y internally. Let P be any
point on AB distinct from A, B and M; a circle 72 of radius ro (equal to the radius of 70)
touches AB at P on the other side of AB. Distinct circles )’1 and ~’3 of radii rl and r3 touch
AB, and each touches ~ internally and ~’2 externally. Show that r = r~+r2+r3 (see
Figure 9).
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Neither the restriction ro < r/2 nor P :/: A, B, M are needed for the desired relation among
the radii in the problem. Indeed we can generalize the problem as follows (Okumura,
1994, see Figure 10):

Figure 10
Theorem 3. Let t be a secant of a circle y of radius r; let y~, Y2, Y3 be circles on one side of
t and tangent to it, with y~ and Y3 internally tangent to y, while Y2 is externally tangent to
yj and )’3. Let Yo be the circle internally tangent to y on the other side of t, and tangent to t
at the midpoint of the segment cut from it by y. If y, has radius ri and
ro -- r2, then r = r~+r2+r3.
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If Y3 degenerates to a point circle in the theorem, Y2 touches t at an intersection of ), and t.
Since r = ro+& in this situation, the centers of ?, Yo, ~’1 are collinear. This suggests a
converse: let y be a circle and k its chord, Y0 and ~’1 circles touching y internally and also
touching k at the midpoint on opposite sides. Then the radius of the circle touching k at
an end of k on the other side from ?o and touching ~1 externally is equal to the radius of
Y0- But it is possible to prove a more general result (see Figure 11).

Theorem 4. Let Yo and ~ be externally (resp. internally) touching circles, and ~, the
circle touching the two at points different from the point of tangency of Yo and yl such
that the three centers are collinear. For any chord k of ), perpendicular to the line through
the three centers, there is a circle of radius equal to the radius of Yo touching k at an end
of k and touching ),~ externally (resp. internally).

Proof. Let us assume that Y0 and )’1 touch externally. Let ro and rI be their radii, and O
and O1 the centers of ), and ~,~ respectively (see Figure 12). Then draw a chord k of ~,
perpendicular to the line through the three centers and a new circle of radius ro and
center A touching y~ externally. If the circle touches k (or its extension) at B and the
circle is drawn such that O~O and AB have the same orientation, then O10 and AB
are equal and parallel, since O10 = ro. Hence O0~AB is a parallelogram and we get
OB = ro + &. Therefore B lies on y. Thus the theorem follows from the uniqueness of the
figure. The internal case can be proved in the same manner.

Figure l t Figure I2

With the aid of this theorem, we can extend the three-circle pattern in the theorem to the
entire plane. Let .... ~-2, ~-~, ~0, ~1, ~2 .... be distinct circles such that all the centers lie
on a line, and ~, and ~,+~ touch externally (resp. internally) and the radii of ~, and ~z,÷~
are equal to r0 and r~, the radii of ~o and ~ respectively. For each pair of ~i and ~i÷~ let
us draw another circle g ,.,+1 touching the two at points different from the point of
tangency of ~, and ~i÷~ such that the three centers are collinear. By Theorem 4, there is a
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translation T such that doT touches 61 externally (resp. internally) and intersects C~o,1 at a
point where the tangent of 6or is perpendicular to the line through the centers of 60 and
01. If we draw the images of the whole figure by the translations T, T2 ..... and T1, Tz,
.... we get Figure 13a (resp. Figure 13b)o

Figure 13a Figure 13b

Figure

The translation T is equal to the product of two translations Tx ad Ty, where Tx has the
direction perpendicular to the line joining the centers of 60 and 01, and Ty has the
direction parallel to the line (see Figure 14). The relation between dx and dy is
dr2 = r2 -(dy-r)2= d~,(2r-dy) by the Pythagorean theorem, where r is the radius of 6o.1.
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Arranging the ratio of the radii r0 and r~ of circles Y0 and y~ and the translation, we can
get patterns with further tangency and incidence. Let the length of Tx and Ty be dx and dy
respectively. Then Figure 15a is obtained by letting r0 = 2r~ and dy = ro+2rl. In this
figure, 6_~.or passes through the point where 61 and 62 touch, and ~3,4 and ~0.~r~ are
tangent. And Figure 15b is obtained by letting ro -- (3+’15)r~ and dy. = rot In this figure
60.~r passes through the point of tangency of 6o and ill, and 64 and ~o7:2 are tangent.

/

/

Figure 15a Figure 15b

5 A GI~ERALIZATION OF THE THANG OF CONGRUENT RHOMBUSES

Before stating the next problem, we briefly introduce oriented circles and oriented lines,
which are needed in this section. Circles and lines with orientations are called cycles and
rays, and we will describe the orientations by arrows in the figures. Two cycles, or a
cycle and a ray touch each other or are tangent to each other if they touch as two circles,
or a circle and a line and the orientations at the point of tangency are the same. If the
orientations at the point of tangency are the opposite, they are said to anti-touch each
other. We consider the sign of the radius of a cycle to be plus if its orientation is
counter-clockwise otherwise minus. For a cycle y and a ray x, -~, and -x denote the cycle
and the ray along ?, and x having the opposite orientations respectively.
Two rays are parallel if they are parallel as lines and have the same orientation. For two
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rays x and y, where neither x, y nor x, -y are parallel, we postulate the existence of a
unique cycle which touches all the rays parallel to x or y, and we call it a cycle at
infinity. We define the curvatures (reciprocal of radii) of cycles at infinity to be 0.

Our pattern in this section is closely related to two wasan problems. One is the following
problem which can be found in Ushijima’s 1832 book:

Problem 4. In Figure 16, 71, ?z, ?3, 74 are incircles of the triangles ABD, ADC, AD’C’,
AB’D’ respectively. Given the radii of ?z, ?3, ?4, find the radius of ?~.

The other is the following problem, which can be found in Aida’s 1797 book:

Problem 5. Four lines are tangent to a circle, and a circle ?i (i = 1, 2, 3, 4) touches each
three lines of the four as in Figure 17. Given the three radii of the four circles, find the
remaining radius.

The answers of Problems 4 and 5 essentially state that
1 1 1 1
rl r3 ?’2 r4

and

where r, is the radius of ?,.

B’ B
Figure 16 Figure 17

Investigating the symmetry suggested by the relation of the radii of circles in Problem 4,
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we found that the remaining external common tangent of 73 and ~’4 in Figure 16 is
concurrent with the lines BC and B’C’. Therefore we can inductively draw circles and
tangent lines which pass through A or the other point of concurrency (Okumura, 1990,
see Figure 18).

Let us use the letter X instead of A and Y to denote the other point of concurrency. Then
the configuration consists of two points X, Y and rays x, and yj (i and j are integers)
passing through X and Y respectively, and cycles touching xi, -x,.+l, yj, -Yj+I for any i and
j. We denote the cycle touching xi, -Xi+l, yj, -Yj+I by (i, j), and call X and Y the vanishing
points of the configuration. If x, and Yl are parallel, then (i, j) is a cycle at infinity.

y2
~0

(-2,0)
(i, 3)

(-1,1) (0, 2)

Figure 18



CIRCLE PATTERNS ARISING FROM RESULTS IN JAPANESE GEOMETRY 17

Our pattern can be regarded as a generalization of the tiling consisting of congruent
rhombuses where both the vanishing points are points at infinity (see Figure 19). Let us
consider the case where one of the cycles, say (0, 0) touches the line XY (as a circle and
a line). This can be regarded as a limiting figure of Figure 18, when (0, 0) approaches
the line XYand touches it. In this case all the cycles except (0, 0), ( 1, -1 ), ( 1, 0), (0,
-1 ) degenerate to one of the points X and Y (see Figure 20).-Therefore our
configuration also can be considered as a generalization of the configuration of a
triangle with the incircle and the three excircles.

Figure 19 Figure 20

Our configuration has the following properties. (1) For any two cycles, their common
tangent rays intersect on the line through the two vanishing points. (2) If we denote the
curvature of the cycle (i, j) by [i, j] then

[i, j] +[i+rn, j+n] = [i+rn, j] +[i,j+n],
[i,j][i + m + n,j-m + n] = [i + m,j- rn][i + n,j + n].

These formula are generalizations of Problems 4 and 5 respectively. For another
generalization of Problem 5, see (Okumura, 1989a). (3) For any integers i, j, k, the four
lines xi, -x,+k, yj, -Ym: have a common tangent cycle. The last fact can be derived from
Theorem 4.5 in (Rigby, 1991).

6 PATTERNS ARISING FROM A SEVEN-CIRCLE PROBLEM
Our last patterns were discovered when the author was solving the following problem,
which can be found in Sakuma’s 1877 book (Okumura, 1995b).

Problem 6. Let ? be a circle of radius r, and ?,,, ?’~ circles of radii a touching ), internally
at the end of a diameter of y, and Yb. 7’b circles of radii b touching 7 internally at the end
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of a diameter of ~ and touching ),, and ~,’~ externally respectively, and Yc, ~"~ circles of
radii c touching ~, internally at the end of a diameter of ~ and touching ?b, ~’~ and ?’b, 7,
externally respectively. Suppose that the centres of ?a, ?b, ~’c, )"~, Y’~, ~"~ form vertices of a
convex hexagon. Given a, b and c, find r (see Figure 21).

The next problem is also related to our pattern, which can be found in Matsuzaki (1997,
p. 42) and Hirayama and Yamaki (1967b), and essentially the same fact stated in
Yamamoto’s book which is cited in Fukagawa and Pedoe (1989, p. 32) with no solution:

Problem 7. Three circles touch each other externally, and another circle contains and
touches them, and the centers of the three small circles form the vertices of a right
triangle. Given the sum of two sides of the triangle, find the radius of the largest circles
(see Figure 22).

Figure 21 Figure 22.

The answer of Problems 6 is r = a+b+c, and the answer of Problem 7 is that the sum of
the three sides equals a diameter of the largest circle. Hence they stated essentially the
same fact. Later on we will show that Figure 22 is a special case of Figure 21 in a sense.

Now let us consider Problem 6. It is not appropriate to reproduce the long proof in
Sakuma’s book here, which is based on Pythagorean theorem. A proof using
trigonometric functions can be found in (Fukagawa and Sokolowsky, p. 25), which
derives a polynomial of six degrees. Let us assume that three circles of radii a, b, c touch
each other externally. Next, tessellate the plane without gaps or overlaps by copies of
the triangle formed by the three centers and consider a vertex D of the tessellation (see
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Figure 23). There are six segments joining the neighboring vertices to D, which have
length a+b, b+c, c+a in pairs. We denote these vertices by C, C’; A, A’; B, B’ and assume
that A, B, C, A’, B’, C’ lie around D in this order. Then draw six circles ga, gB, 9C, 9A’,
9B’ and 9c’ of radii a, b, c, a, b, c with centers A, B, C, A’, B’, C’ respectively. It is
obvious that each of the six circles touches its two neighbors externally. Since the
distance between D and one of the intersections of the line DA and ~’A is a+b+c, ?a
touches the circle of radius a+b÷ c with center D internally. Similarly the remaining five
circles are tangent internally to the seventh circle with center D. Therefore a solution of
Problem 6 follows from the uniqueness of the figure.

Figure 23
Now we refer to Problem 7. Let us again tessellate the plane as in the solution of
Problem 6, using the triangle formed by the centers of the three small circles. Then we
can see that there is a circle touching the small three, and that its radius is equal to the
sum of the radii of the three. Therefore the uniqueness of the figure gives an immediate
solution of Problem 7.

Let us denote the seventh circle in Figure 23 by 70. The tessellation suggests that we can
construct a circle pattern in the plane consisting of copies of YA, )~B, ~C and YD. Let S and
T be the translations mapping A into A’ and B into B’ respectively. If we draw the images
of YA, Y~, YC and )’O by SmT’ for all the integers m and n, we get a pattern as in Figure 24.

The reader may consider that the largest circles (the copies of ?’D) play a special role
among the others. But we will show that each of the circles plays exactly the same role if
we ignore the relation "one circle contains another" or "one circle is contained in
another". To see this fact we use cycles as in the previous section. Let us assign counter-
clockwise orientations to the circles ?A, )~ and ?’c and their copies, and clockwise
orientations to ?z) and its copies so that each pair of touching circles anti-touch as cycles
as in Figure 24. Then for each cycle, there are six cycles anti-touching it. The six cycles
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fall into three pairs such that each of the pairs consists of two congruent cycles anti-
touching the first at the end of a diameter. Since the orientations of the largest cycles are
opposite to the other, their radii have different signs from the others. Therefore the sum
of the four different radii of the cycles in the pattern is equal to zero.

Figure 24

The centers of the circles form a triangular lattice in our pattern. Let us consider the case
where A’BC is a right triangle with the right angle at C. Then AA’ and BB’ are
perpendicular, and the figure consisting of YA, ~, ;’a’, ~’ and ~o is symmetric in the line
AA’. This implies that the images of Yc and ?c’ by the reflection in the line AA’ coincide
with ycr and ~,crq respectively. Therefore ~,cr and ;,c.r-1 touch ~’D internally. Similarly
symmetry in the line BB’ implies that Ya and Yw (and y~ and Ya’) also touch. Hence if we
draw our pattern in this situation, it is symmetric in the lines AA’ and BB’, and each of
the circles has eight tangent others (see Figure 25). In this sense, Problem 7 can be
regarded as a special case of Problem 6.

Figure 25

Arranging the shape of the triangles of the triangular lattice, we get patterns with various
tangencies. Every circle is always tangent to six others in our pattern. When every circle
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is tangent to exactly n other circles in our pattern, we may say that the pattern is of the n-
type. Then our pattern is of 6-type in general. Since our pattern is symmetric in the
center of any circle, n is always even. As we have just seen, if the triangles of the lattice
are right triangles, we can get a pattern of 8-type.

The fact stated in Problem 7 can easily be generalized, that is, the sum of the three sides
of a triangle of the triangular lattice in Figure 23 is equal to a diameter of a largest
circle. Indeed, if we construct our pattern with a triangle with the sides x, y and z, then
the four different radii of the circles are (x+y÷ z)/2, (-x+y÷ z)/2, (x-y+z)/2,
(x+y-z)/2.

If we construct a pattern with a triangle with the sides 1, ~/2, ~/5 (see Figure 26a), we get
Figure 27, which is of 10-type. If we complete the pattern so that it has symmetry p4m,
we get a pattern in which every circle touches 16 others (see Figure 28). Similarly we
can take another triangle with the sides 1, ~/5, ~17 (see Figure 26b). Then we can get
another circle pattern with further tangencies. But unfortunately the resulting pattern is
so messy that it is hardly worth describing it here.

Figure 26.a. Figure 26.b.

Figure 27
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7 CONCLUSION

Figure 28

Almost all of the figures in geometric wasan problems consist of several elementary
figures such as triangles, circles, rectangles and so forth. Therefore to generalize such
problems is not to consider properties of a single elementary figure such as a triangle
and a circle, but to try to find some relationship between such figures, and this can
sometimes result in finding some configurations or patterns. Since wasan people liked to
consider a certain inner area of an elementary figure, it is useful to try to extend such
figures to some outer area. Also it is useful to try to embed such figures into more
symmetric figures. By constructing several patterns arising from wasan problems, we
were able to show that they are good sources for such experiments.

Since we confined our configurations to ones involving tangent circles, we do not refer
to patterns consisting of polygons. But we can also construct such new patterns or
configurations arising from geometric wasan problems. ~e hope to discuss them in a
later paper.
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