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The regular arc of a baseball or the periodic swing o£ a pendulum are
examples in which nature determines a regular and predictable pattern of
motion. Their position and velocity can be measured and predicted with
a high degree of accuracy.

The rolling motion of the clouds in the sky or the turbulent gyrations
of a drop of milk in a cup of hot coffee are examples of complex motion.
But complex as the motion is, it too is determined by forces acting on
the particles. While the behavior is complex to the eye and its future
directions can be predicted with limited accuracy, the behavior is still
deterministic.

In many complex systems, the deterministic behavior is observed to be
chaotic. In order to see their beauty and symmetry, a new field of
mathematical analysis has developed and with the aid of computers,
characteristic parametersI have been developed that qualitatively
categorize their behavior. Some of these measures include basins of
attraction, Poincar~ sections, fractal dimensions, Lyapunov exponents and
Kolmogorov entropy.

Studies of chaotic systems tend to follow two approaches. In computer
models the values of the variables in a set of coupled non-linear
equations, such as the Lorentz equations, are evaluated as a function of
the magnitudes of the various coupling coefficients in the equations.
Using such analysis in a variety of systems, a search is made for the
universality of the routes to chaos and the chaotic behavior.

In experimental systems the dynamic response of some variable is
investigated as a certain drive parameter is varied. Again the routes
to chaos and the chaotic behavior are determined and compared with any
universal behavior patterns that have been developed from the models.
However, it is often impossible to model these non-linear systems because
they are so complex that the equations of motion cannot be derived or the
coefficients of the various terms in the equations cannot be evaluated
for comparison with the experiments. Rolling clouds and turbulent fluids
are two examples that are much too complex for such detailed analysis.

A significant challenge in chaos research is the investigation of systems
that have sufficient complexity that details of the route to chaos can
be investigated but simple enough that a model can be developed and
predictions of the behavior evaluated. In such systems it is possible to
compare directly the model and the experiment, to evaluate the
universality considerations and to develop methods that will allow the
experimenter to influence the chaotic motion of the system in a
controlled fashiona.
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Many "simple" systems have been developed in which the routes to chaos
and chaotic behavior have been investigated in a controlled fashion.
These include turbulence in thin fluid sheets~, turbulence in rotating
cylinders4, vibrations of a magnetic ribbons, coupled electronic
oscillators6 and irregular oscillations in optical lasers7.

Another "simple" system is that of magnetic resonancee. In ferromagnetic
solids, the atomic magnetic moments are coupled via a coulombic "exchange
interaction" and they align parallel to each other. In ferromagnetic
resonance (FMR) the normal modes of the precession of the moments include
small variations in the amplitude and/or the phase of the adjacent
moments. Depending on the geometry of the sample, various "normal modes"
of the magnetic moments can be excited. These modes would be analogous
to a vibrating string on a violin or a guitar or to the more complicated
patterns associated with the vibrations of the membrane of a drum head.

The FMR spectra in thin discs of yttrium iron garnet (Y~Fes01~) consists
of normal modes that have an amplitude and phase of precession that have
the same pattern as the amplitudes of the vibrations on a drum head.
Since each of these modes have a different shape they will have different
energies and therefore resonate at different frequencies. A typical
spectrum is shown in Figure i.

While each of these normal modes can be excited individually, there is
a coupling between them giving rise to a non-linear interaction. As the
perpendicular driving field is increased, any one of the modes is
observed’.to progress from the steady state, precession at constant
amplitude, to a state of auto-oscillation in which the precession angles
gyrate in and out of their average values. As the driving field is
further increased, the periodic oscillation is observed to follow a
bifurcation route to chaos. In figure 1, the shaded region in magnetic
field versus strength of the driving field are positions for which the
angle of precession is non-constant or oscillating.

In magnetism it is possible to evaluate the energy terms (the spin
Hamiltonian).    From this expression it is possible to develop the
equations of motion of the magnetic moments including the form and the
magnitude of the non-linear terms. As a result it is possible to develop
a model in which all of the parameters are fixed and a very careful
analysis of the model with the experimental results can be made. The
agreement between the experimental results and the predictions of the
model are unusually close for such a complex system.

Having a chaotic system that is so well behaved is it possible to
influence the chaotic response of the precessing spins by perturbing a
system parameter? In this case the system parameter to vary is the
applied magnetic field and three different techniques have been used to
change the chaotic motion into a desired and predetermined behavior.

In the first experiment, a small sinusoidal time dependent variation is
applled to the magnetic field9. As the frequency of the sinusoidal
modulation is varied, there are certain frequencies at which the chaotic
behavior is quenched and an auto-oscillation is observed that is at the
frequency of the perturbing field or at multiples of it. Typical results
of the experiment are shown in Figure 2.

In a second experiment, the goal is to prevent any oscillation in the
precessing moments even when they are driven at amplitudes that are of
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sufficient magnitude that without the perturbation the system would
behave chaotically~° . Using a time delayed feedback technique, it is
possible to control the chaotic motion by reducing it to a constant
amplitude via a reverse bifurcation or de-bifurcation route. Typical
results are shown in Figure 3.

In the third experiment, the goal is to have two samples both in the
chaotic regime but to have them "phase-locked" or synchronized together.
In the experiment the chaotic signal from the oscillator is stored in a
computer and at a later time a feedback method is again used to control
the behavior of the ongoing precession to follow the same behavior
observed at the time when the signal was stored in the computeru.

In each case, the model predicts the behavior out of chaos observed in
the experiments with the same high degree of accuracy that was observed
in the behavior of the system on the route into chaos.

Ferromagnetic resonance is a system in which the experiments are nicely
controlled and details of the route from order to chaos can be
investigated and compared to the model. Once in the chaotic state it is
also possible to use perturbation techniques to influence its behavior
returning from the state of chaos to one of regular order.
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Figure i (left) The FMR spectra of a magnetic garnet film. The circular patterns indicate
the variations of the phases of ths magnetic moments in the various modsa excitad. The
shaded region indicates the regions in power vs. magnetic field space where the moments
have a time variation in the precession cone angle (periodic or chaotic).

Figure 2, (right) Regions Of stabilization of chaotic signals ro periodic orbits in the
modulation "field vs frequency plane. The numbers denote the frequency (in M~Z) of the
periodic os@illation after stabilization.
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Figure 3 (left) a) Two dimensional phase diagram of a chaotic signal.    With the
application of a time delayed perturbation the signal is reduced to a period four b),
period two c), period one d) and finally to the quiescent state (not shown).

Figure 4 (right) Signal amplitudes of the master (stored) signal vs. that of the slave
(synchronized) signal, a) without the control perturbation and b) with the control
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