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A cylinder and a cone are two conmaon examples of surfaces that have zero curvature
everywhere (except at the cone point). This makes them, in some sense, fiat. Each of these
two surfaces can be sliced open and, without stretching, unrolled to lie fiat.

The torus is also described as being fiat. The meaning of "fiat" can be taken in several
ways. First, a torus is a quotient space of the fiat plane. Second, if we view the torus as S1 × S1
(a surface embedded in R4) then the Gaussian curvature of the surface is zero everywhere.
Third, when embedded in//~ as a surface of revolution the net Gaussian curvature is zero.
But it is known that a torus cannot be smoothly embedded in ffi such t.hat the Gaussian
curvature is zero everywhere. In this paper we will show ways of embedding tori in /~
as polyhedral surfaces such that the concentrated curvature at each of the vertices is zero.
And since all curvature on a polyhedral surface is concentrated at the vertices, we will
have tori in/P that have zero curvature everywhere. These polyhedra are constructed by
tiling a piece of the plane with congruent triangles, and then folding the tiling along edges
of the tiling. These tori will also have the symmetry properties that all faces in a given
polyhedron will be congruent (monohedral), and all vertices will be adjacent to six faces
(idemvalent). As abstract polyhedra all of the faces are equivalent, and all of the vertices are
equivalent. As geometric polyhedra they have various symmetry groups resulting in some
stunning examples. We will show how to calculate these tori by considering the symmetries
of the resulting tori and the symmetries of the planer tilings from which they are folded.

A polyhedron is call monohedral if all of its faces are congruent to each other. A polyhe-
dron is called idemvalent if there are the same number of faces incident to each vertex. We
will be looking at monohedral idemvalent toroidal polyhedra. Euler’s formula tells us that

V-E+Fffi2-2g
where V is the number of vertices, E is the number of edges, F is the number of faces,
and g is the genus of the polyhedron. In the case of spherical polyhedra g = 0 so the
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formula is V - E + F = 2. If each face is a 1o-gon and there ~re q faces incident to each
vertex, then there ~re exactly 5 solutions for the pair {p, q}. They are {3, 3), {3, 4), {3, 5},
{4, 3}, and {5, 3}. These correspond to the tetrahedron, octa3edron, icosahedron, cube, and
dodecahedron respectively; and each of these polyhedra can be realized with regular faces.

For toroidal polyhedra (9 = 1) we have V - E + F = 0. Counting vertices and edges
we see that V = pF/q and E = pF/2. Thus pF/q - pF/2 + F = 0. Notice that p ~ 0 and
F # 0. So dividing by pF we get

1 1 1

In this case the only integer solutions for the pair {p, q} are {3, 6}, {4, 4}, and {6, 3). In
the spherical case F was determined by p and q, but in the toroidal case it is not. In fact,
there are infinitely many combinatorial solutions for each of the three types. Brfickner [2]
showed some self-intersecting examples of the type {4, 4}. Alaoglu and Giese [1] showed
non-self-intersecting examples of the types {4, 4} and {3, 6}. In both cases they gave infinite
families of examples, but there are many other combinatorial solutions waiting to be realized
geometrically. We will here show how some more of the solutions of the type {3, 6} can
be realized geometrically. It would be nice to realize the polyhedra with regular faces, but
as we shall see this is asking a lot. So we will have to content ourselves with all the faces
congruent.

Alaoglu and Giese [1] showed the existence of non-self-intersecting monohedral idemvalent
toroidal polyhedra by building them out of monohedral octahedra. The method we will use
here is entirely different. We will tile a patch of the plane with triangles and then fold
this along the edges of the tiling to make a torus. The patch of the tiled plane used will
be topologically a rectangle. We will play the topologist by identify opposite edges of the
rectangle. However unlike a topologist we will not allow any stretching, only folding along
edges. Hence the resulting torus will not only have net curvature zero, it will have zero
curvature everywhere. A fiat torus!

The calculations involved in computing these toroidal polyhedra involve successively solv-
ing systems of two or three linear or quadratic equations (depending on the symmetry of
the polyhedron). The description is somewhat technical and is given in my thesis [3], and to
some extent that forthcoming paper. In this abstract we will content ourselves with showing
an example for each of the symmetry types.

The toroldal polyhedra generated by this folding process can have one of five different
symmetry types. That is, the, polyhedra can have the symmetry of a prism, an antiprism, a
skewed antiprism, a dihedral group or a cyclic group. Each of the figures below is shown in
stereo images. If the reader can get the left eye looking at the left image and the right eye
looking at the right image then the mind should perceive a three dimensional image. Figure 1
shows a torus with prismatic symmetry. It has an axis of 15-fold dihedral symmetry and one
central plane of reflective symmetry. Figure 2 shows a torus with antiprismatic symmetry. It
has an axis of 15-fold dihedral symmetry and one central plane of roto-reflective symmetry.
Figure 3 shows a torus with skew-antiprlsmatic symmetry. It has an axis of 15-fold rotational
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symmetry and 15 axes of 2-fold rotational symmetry. It is interesting to note that toroidal
polyhedra of this symmetry type have no reflective symmetry and a~e folded from a tiling of
the plane that does not have reflective symmetry either. Figure 4 shows both the top and
bottom views of a torus with dihedral symmetry. Unlike th~previous three examples the top
and bottom of this toms look different. Finally figure 5 shows an example of a toms with
only cyclic symmetry. Again top and bottom views are shown since the top and bottom are
different. The difference between the polyhedra in figures 2 and 3 is very slight but close
inspection will show that they are indeed different both geometrically and combinatorially.
The same is true about figures 4 and 5

Each of the figures shows but one example of what ~ be constructed. The forthcoming
paper will show how an infinite number of infinite families of each type can be constructed.

Pigure h A fiat torus with prismatic symmetry.

Figure 2: A fiat torus with antiprismatic symmetry.

Figure 3: A fiat torus with skew-antiprismatic symmetry.
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Figure 4: A fist torus with dihedral symmetry.

Figure 5: A flat torus with cyclic symmetry.
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