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1. It is known that: 1) almost all polyhedra are rigid and 2) there are flexibles ones.

Thus having a given polyhedron we cannot say at once is it rigid or not and we need some

criterion for a definite answer. For certain classes of polyhedra these criteria are known

sufficient or necessary for the rigidity / nonrigidity (re. this is the case of convex polyhedra,
suspensions etc.) but it is evident that we couldn’t have a general and in the same t~me

sufficiently effective criterion. In these conditions one can propose an algorithmical approach

to the question: a polyhedron being given to indicate a finite algorithm for the verification of

its bendability. We can give an algorithm of this kind for the polyhedra having only one

linearly independent field of 1-st order infinitesimal bending (in its turn for the verification of

this property it is sufficient to calculate the rank of a matrix defined by the coordinates of
polyhedron’s vertices), see (Sabitov,1994). The algorithm is realised for the computer

calculation and is verified for certain known flexible / rigid polyhedra. For a polyhedron

having two linearly independent infinitesimal bendings we (the author and O.Pavlova) can

also propose an algorithm but this result yet no published.
An another approach is described in (Sabitov,1987) but the method is extremly

depending on the polyhedron’s combinatorial structure and is applicable only after a
preliminary elaborate study of the polyhedron.

2. Among the known embedded flexible polyhedra one of Klaus Stefen has only 9
vertices In (Maksimov,1995) it is shown that this number 9 is the least possible: if an
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~mmersed polyhedron with 8 or less vertices is bendable then its generalised volume is 0 and
it can’t be embedded.

3. After the discovery of the existence of flexible polyhedra it was remarqued that for
all known flexible polyhedra theirs volume is not changing in the process of flexion.
Therefore R.Connelly in his report on the Helsinki International Mathematical Congress in
1978 has conjected quoting D.Sullivan that this property is general ("bellows conjecture").
The author has proposed in (Sabitov, 1992) and (Ivanova-Karatopraklieva and Sabitov,1995)
an approach to this hypothesis from a standpoint more general: it is enough to show that the
volume of any polyhedron is root of a polynomial with coefficients depending only on metric
of the polyhedron. The proof of this extended Connelly-Sullivan hypothesis would give first a
positive answer to the bellows conjecture second a possibility to calculate the possible
volume’s values of a polyhedron by its intrinsic metric and combinatorial structure without
even its realisation in three-space. This approach is realised in (Pavlova, 1995) for
suspensions. In a more general case this is made in the author’s work (Sabitov,1995).

A sketch of proof. We say that a polyhedron with triangle faces possess the property B
if its volume is root of a polynomial coefficients of which depend only on the edge’s lengths.
Let a polyhedron P of any topological genus with n vertices have a vertex of degree 4. We
eliminate the open star of this vertex and close the obtained 4-gonal hole H by two triangles:
in the first time we consider as given a diagonal of H (and by this manner we obtain a
polyhedron PI with n-1 vertices) and in the second time we take as known the other diagonal
of H and obtain an another polyhedron P2. A iemma says that if polyhedra P1 and P2 possess
the property B then P is so too. Thus if P is situated on the base of a graph-tree which has
final elements (may be of different level) possessing the property B then the extended
hypothesis for P is true. For example, it is the case for all polyhedra of genus 0 with n < 12
vertices. It is true also for so-called combinatorially one-parametric polyhedra (a polyhedron
P is said combinatorially one-parametric if its verti ces may be found successivly by fixation
of the length of a diagonal of P; f.e. all suspensions are combinatorially one-parametric).

A polynomial Q for the volume of a polyhedron P being obtained a question arises
about the minimality of degree of Q. In the work (Astrelin and Sabitov, 1995) this question is
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solved for the octaedra: the minimal degree of the volume polynomial for an octaedron is 8

and more this number is the best possible.
4. It is known that in the classic definition of the higher order infinitesimal bendings

there is some logic defect(Sabitov, 1992a); also the definition of the n-order infinitesimal

rigidity requiers some refiniment (Cormelly and Servatius,1992). We can propose for the

discussion a definition of n-order rigidity (Sabitov, 1992b) naturally related with the
definition of the high order infinitesimal bendings from (Sabitov, 1992a).
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