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HIRROR GENERATED CURVES

S]avik V. Jab]an
The Mathematical Institute,
Belgrade 11001, Yugoslavia

The imitation of the three-dimensional arts of plaiting,
weaving and basketry was the origin of interlacing and knotwork
interlacing ornaments. Their highlights are the Celtic
interlacing knotworks (Bain, 1973; Cromwel, 1393) (Fig.la),
Islamic layered patterns and Hoorish floor and wall decorations.

The common geometrical construction principle for all such
decorations is the use of (two-si,ded) mirrors incident to the
edges of a square, triangular or hexagonal regular plane tiling,
or perpendicular to its edges in their midpoints (Fig.la). In the
ideal case, after the series of consecutive reflections, the ray
of light reaches its beginning point, defining a single closed
curve (Gerdes, 1990). In other cases, the result consists of
several such curves.

The construction of such curves was occupied the attention
of two most greatest painters-mathematicians: Leonardo and DOrer
(Bain, 1973). Some interesting geometrical and aritmethical
properties of the curves mentioned are discovered by Paulus
Gerdes (1989, 1990, 1993). Let us notice one more beautiful
geometrical property: such curves can be obtained using only few
different prototiles. For the construction of all the curves with
internal mirrors incident to the edges, ~ey are sufficient three
prototiles in the case of a regular t. -~gular tiling, five in
the case of square, and 11 in the case of haxagonal regular
tiling. We may also use their combinations occuring in the 11
uniform Archimedean filings (Gr0nbaum & Shephard, 1986) (Fig.lb).

(a)                                   (b)
Figure 1

The symmetry of such curves is used for the reconstruction
of Tamil designs (Gerdes, 1989), as well as for the
classification of the Celtic frieze designs (Bain, 1973). From
the ornamental heritage, at first glance it looks that the
symmetry is the mathematical basis for their construction and
possible classification. But, the existence of such asymmetrical
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curves suggests the other approach, Trying to discover their
common mathematical background, they appear two questions: how to
construct such a perfect curve (this means, how to arrange the
set of mirrors generating it), and how to classify the curves
obtained. Our consideration we will restrict to the curves
derived from the square tilings.

In principle, any polyomino (Gr0nbaum & Shephard, 1986) with
mirrors on its border, and two-sided mirrors between cells or
perpendicular on the internal edges in their midpoints, can be
used for the creation of the corresponding curves. First, we
construct all the different curves without use of internal
mirrors, starting from different edge midpoints and ending in
them, till the polyomino is exausted, i.e. uniformly covered by k
curves. After that, we use "curve surgery" in order to obtain a
single curve, according to the following rules: (a) any mirror
introduced in a crossing point of two distinct curves connects
them into one curve; (b) depending on the position of a mirror, a
mirror introduced into a self-crossing point of an (oriented)
curve makes no change, or breaks it into two closed curves. In
every polyomino we may introduce k-l, k, k+1 ..... 2A-P/2
internal two-sided mirrors, where A is area and P perimeter of
the polyomino. Introducing minimal number of mirrors k-1 we first
obtain a single curve, and in the next steps we try to preserve
that result.

There is also a simple way to preserve such single closed
curve: to add on the border of a polyomino a cell with three
mirror-edges and one empty edge, or delete such a cell. This way,
any such polyomino with a single curve can be transformed into a
rectangle. Unfortunately, they are rectangular mirror-schemes
which cannot be derived that way.

In the case of a rectangle with the sides a,b, the initial
number of curves, obtained without use of internal mirrors, is
k=gcd(a,b), so in order to obtain a single curve, the posslble
number of internal two-sided mirrors is k-l, k ..... 2ab-a-b.
According to the rules for introduction of internal mirrors, we
have the algorithm for the production of designs consisting of a
simple closed curve: each from the first internal k-1 mirrors
must be introduced in crossing points belonging to different
curves. After that, when they are conected and transformed into a
single line, we may introduce other mirrors, taking care about
the .number of lines, according to the rules mentioned. The next
question is the classification of the curves obtained. First
criterion we may use is the geometrical: two curves are equal iff
there is a similarity transforming one into the other. Instead of
considering the curves, we may consider the equal mirror
arrangements defined in the same way. Having the algorithm for
the construction of such perfect curves and the criterion for
their equality, we may try to enumerate them: to find the number
of all the different curves (i.e. mirror arrangements) which can
be derived from a rectangle with the sides a,b, for a given
number of internal     mirrors m (me{k-l, k ..... 2ab-a-b}).
Unfortunately, we are very far from the general solution of this
problem. Reasons for this are: every introduction of an internal
mirror changes the whole structure, so it behaves like some kind
of "Game of Life" or cellular automata.
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Till this time, we have only few combinatorial results,
obtained by non-standard use of P61ya enumeration theory [Aigner,
1979; Pblya & Read, 1987). Let be given a rectangle with sides
a,b (aCb), k=gcd(a,b), and let be introduced the minima] number
k-1 of two-sided internal mirrors incident to the edges of its
square i~iling. If t,=(ab-lcm(a,b)):(k(k-1)), x=a:(2k), y=b:(2k),
we have, for example, for k=5, a=O(mod 10) and b=5(mod 10), the
formula 14720t,’~-576t.:~+80t, z+32t, x-4xy-x, giving the number of such
curves.

The other point of view on the classification of such
perfect curves is that of the knot theory. As it is mentioned
before, every such curve can be simply transformed into an
interlacing knotwork design, this means, a projection of some
alternating knot. In the history of ornamental art, such curves
occured most frequently as knotworks, then as plane curves. Even
the name Brahma-mudi (Brahma’s knot) (Gerdes, 1989) denoting such
Tamil curves refers us to the knot theory (Burde & Zieschang,
1985; Kauffman, 1987; Kohno, 1989). In order to classify them, we
will first transform every such knot projection into a proper
(reduced) knot projection (Kohno, 1989)- a knot projection
without loops, by deleting cells with loops.

This way, we will obtain proper knot projections with the
minimal number of crossings. Two such projections or knot
diagrams are equal iff they are isotopic in projection plane as
graphs, where the isotopy is required to respect overcrossing
respectectively undercrossing (Burde & Zieschang, 1985). For the
classification of knots they are used different kinds of knot
invariants: Alexander polynomials (Burde & Ziesphan9, 1985;
Kauffman, 1987; Kohno, 1989), Jones polynomials (Kohno, 1989),
Conway polinomials (Kauffman, 1987), etc. In order to classify
the knot projections (Dowker & Thistlethwaite, 1983) we will
define a new invariant of knot (or link) projections. Let be
given a proper oriented knot diagram D with generators
If the meeting point of generators g~, gj, gk is "right", then
aid=t, aij=l, a~k=-l; if it is "left", then    a~f=-t, a~=l,
a~k=-l; in all the other cases a~j=O. The determinant
is the polynomial invariant of D.

The writhe of D, denoted by w(D~, is the sum of signs of
all the crossing points in D, where the sign is +I if the
crossing point is "right", and -I if it is "left" (Kohno, 1989).
There is the most simple visible property of every knot
projection: lw(D) l is the type of the knot projection. By the use
of a computer program, based on algorithm developed by Dowker &
Thlstlethwaite (1983), it is derived the complete list of non-
isomorphic alternating knot projections for 3<-n<-12.

There are some important properties of the integer
polynomial invariant d(t)=cn tn+...+cl t:    (a) for every
alternating knot projection, the degree of d(t) is n and IcnI=1;
(b) for every knot projection |cII is equal to the type of the
knot projection (i.e. Ic11=lw(O) I); (c) d(~) and d(-t) correspond
to the obverse (enantiomorphic, mirror symmetrical) knot
diagrams; (d) for n=O(mod 2), a change of the orientation of an
alternating knot projection results in the change of d(t) to
d(-t); (e) for n=1(mod 2) a change of orientation of an
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alternating knot projection results in the change of d(t) to
-d(-t). According to (c),(d) and (e), in the set of all the knot
invariants d(t) we may distinguish even functions (d(t)=d(-~)),
containing only even degrees of t, corresponding to amphichiral
knot projections, and odd functions (d(t)=-d(-t)), containing
only odd degrees of t, which are invariant to a change of
orientation of the knot projection. Let us also notice that
invariant introduced makes distinction between non-isomorphic
knot projections of composite knots (i.e. direct products of
prime knots).

This invariant may be simply transferred to the alternating
link projections. In this case, the result is the polynomial
invariant of the form: d(t;]:Cnt;n+...+Ck(;~, where n is the number
of crossing points, and k is the number of the link components.
For every link, Ic, I=I. If a~ are the link components,
a~~=w(a~), and if a~j=/k(a~,aj) denotes the linking number of
the components a~,aj, then ]c,l=ldet(a~j)].

The problem exposed shows how the same (old) structures-
perfect pavitram curves [Gerdes, 1989, 1990), may be regarded
from the three different points of view: that of the theory of
symmetry, combinatorial geometry and topology, taking us to a
trip through mathematics, and introducing a new class of mirror-
structures: mirror-generated curves.
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