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1. Introduction
Although there are several interesting aspects in the field of boron-rich solids, most

research scientists working with these materials are interested in theft physical and chemical

properties some of which are supposed to be of technological importance. In the present

paper, however, we presents structural arrangements and symmetry of icosahedral BI2

structures in boron-rich solids. These topics are very interesting because of the unusual forms

and beauty of the structures which are quite different from conventional atomic configurations.

Boron, borides and related compounds differ from conventional solids in that it is
impossible to interpret their bondings in terms of the conventional rule of valence. As a result,

these materials manifest a number of unique properties (such as high-hardness, high-melting

points, etc.) which in many case are of possible technological importance giving rise to a
growing interest in their physics and chemistry. Further, these materials are unique in that the

boron atoms in their structures tend to gather to bond each other. With increase of boron
concentration, the boron atoms form a pair, a (single, do~ble and triple) zig-zag chain, a

hexagonal network, B6 octahedron, BI2 cubooctahedron and BI2 icosahedron.

2. B t2 icosahedron and its derivatives
Although a great many icosahedral BI2 compounds have so far been published, they can

be classified into eight types (Table 1) according to the mode of icosahedral BI2 arrangement

(Higashi, 1986). It is not possible to utilize fivefold rotation symmetry in a two- or three-

dimensional periodic network, and thus three dimensional arrangements of BI2 icosahedra
form open although rigid three dimensional frameworks. Except c¢-rhomboheral boron,

therefor, icosahedral B 12 crystals need additional structural entities such as B28, B22 and B20

units, and isolated boron atoms to fill openings within the B 12 frameworks.



238

Table I Classification of icosahedral B12 crystals

Structure type Structural Formula Reference

~t-rhomb. boron
[~-rhomb. boron
~t-tet. boron

~-tet. boron / ct-AlBl2

A1C4B24

AIMgB14

~’-AIB 12

BI2
(B 12)4.(B2s)2B
(B 12)2B2](B 12)2.C.B

(]312)2B22Bx / (B 12)2B2o.AI3.33

(B 12)2Cs.B4AI2.I.C.B
(B 12) I3B42.Y3
B 12B2"A1Mg

(’B 12)4(B20)2.A16.66

(Decker & Kasper, 1959)
(Hughes et al., 1963)
(Hoard et al., 1958) /
(Will & Kossobutzld, 1976)
(Vlasse et al., 1979) /
(Higashi et al., 1977)
(Will, 1969)
(Decker & Kaspez, 1959)
(Matkovich & Economy, 1970)
(I-Iigashi & Ito, 1983)
(Hughes et al., 1977)
(l-ligashi, 1983)

In Fig. 1, B28 and B20 units are presented. The B22 unit can be made up of B20 unit by

filling two vacant sites with two B atoms. In addition to occurrence of these icosahedral

derivatives, there are successive stages in the evolution of the basic unit ~.B7, BI2, B84, and

B I2(B 12)12) of boron framework in some boron-rich solids (Fig. 2).

(a) (b) (e)

Fig. 1.(a) B28, (b) B20-(C2), and (c) B20-(Cs)

As shown in Fig 2, B7 is a half-icosahedron with an additional B atom. B84 unit is a basic

structural unit of the 13-rhombohedral boron structure. This unit consists of one central BI2

icosahedron and surrounding twelve B6 half-icosahedra. (In the [3-rhombohedral boron structure,

the twelve half-icosahedra belong to six icosahedra and six B28 units which are directly linked to

the central icosahedron.) BI2(’BI2)12 unit is a basic structural unit of YB66, and made up of a
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(a) (b)
(e)             (~1)

Fig. 2. Evolution of the basic unit of the boron framework in some boron-Rich phases:
(a) B7, (b) BI2, (c) B84, (d) BI2(B12)12 (From Naslain, 1977).

(e)
Fig. 3. Features of the linkages, (a) B 12-6B 12, (b) B 12-6B28, (c) B20-9BI2, (d) B28-gB 12
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centa’al B12 icosahedron and surrounding twelve B12 icosahedra. All the linkages between

neighboring icosahedra within the giant B12(BI2)l2 unit are formed along the fivefold axes of

icosahedra. Construction of any structural unit greater than B 12(B 12)12 by linking B12 icosahedra

through their fivefold axes seems to be impossible, since five-fold rotation symmetry can not be

utilized in constructing three dimensional periodic space. Therefore, in the YB66 structure

(Cubic; Space group, Fm3c; a = 23.44 A) the giant BI2(BI2)I2 unit is situat~l at the latuce

point of the face-centered cubic unit cell, resulting in the occurrence of large openings, which are

filled with Y atoms and irregularly shaped B42 units having considerable number of vacant sits.

In Fig. 3, features of the linkages, BI2-6B12 (~-rhombohedral boron) , BI2-6B28 ([~-

rhombohedral boron), B28-9B12 (13-rhombohedral boron), and B20-gBI2 (ot-AIBI2), are

presented. The beauty of the structures of icosahedral BI2 crystals is in that all the linkages

between the structural units are effected along their fivefold axes of icosahedra or similar axes of

the icosahedral derivatives, neatly constructing infinite three dimensional rigid frameworks.
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HEXA-PLEXUS
Aklo Hlzume
ArchiLect

4-22-]5-]0| ]zumi, SugJnami. Tokyo, Japan

OSIX-SCRUMMED PENTAGRAMS
A stTucture as shown in Figure 1 is constructed with six pentagons Intersecting each other.
The structure consists of 30 pieces as shown in Figure 2.

Fig. I SIX-SCRU~.D PENT^GR^MS |~NT^GI~MS

If the pentagon is replaced with a pentagonal frame as shown in Figure 3, the structure is as
shown in Figure 4. The pentagonal frame in Figure 3 is formed in accordance w~th the
golden section ~". The frames support each other at a contact point.
When the frame has a width w, and a thickness d, the length of one side of the pentagon is:

~=4 (J’~ w+d/~:) ( ~" :The golden section)
Figure 6 shows a work formed in this manner. Six pentagonal frames having certain
thickness engage with each other. The work, made by assembhng 30 peeces in F~gure 5,
can be a puzzle.

l i.~..1. A piece of BIX-SCI~IIMMhl)
PI;NTAGON^I, I

I iR ’3 A piece of SIX-SCI]IJMMh0
"[’][|CK PENTAGONAL FI~’~ Fi.g. 6. S[X-SCRLI~q4EO TIHCK PENT^GON~L FR,~IES
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¯ SIX-SCRUMMED FINGERS
If the pentagons are replaced with pentagonal frames made of colomnal bars each having a
radius r, the length of one side of the pentagon is’

~=4~(l+d 1 7"c+ I 8.)
3~+1    r

The completed work seems like ssrummed people or naturally crossed fingers (Figure 7).
Figure 8 is an developed view of a joint part of a finger,

,SIX SCRUMMI.I] t’IN(;I:RS

Fig. 8. An develop view of a ptece or" $|X-SCRLII~I) |:[NGFJ6

There are heterogeneities of these six-fold constructions, distinguished between clockwise
and counterclockwise directions. However, the pentagon can not be distinguished. The
element has no play, and if we are careless about the ratio, the structure should be loose
Precise assembling is required. Once completed, the work has a stable and ngid structure.
If we were classicists with an old sense of beauty, we would be settsfied with such a lira|ted
formative art, and be absorbed In making the plan minutely.
However, It does not satisfy me, because all of them are self-concluded and there is no
chance to expand to infinity The nature would avoid such an unconformable formation.
¯ HEXA-PLEXUS
A pentagon could not be distinguished between clockwise and counterclockwise direction,
indeed Using a kind of spiral star structure (Figure 9) instead of a pentagon, we can easily
d~stinguish them. I have invented the structure expanded into unlimited plane, called ’STAR
CAGE ~(GO-MAGARI)" (1990). It stands by itself as a five-fold planar strudture.
To make a six-fold structure with the spiral star structure, we can see the planes, which are
constructed with "GO-MAGARI", quasi-periodically intersect one another (Figure 11, 12).
The spiral star struclums support each other at straight lines.
The regular dodecahedral, or regular icosehedral symmetry and size of the structure is
defined based on the straight lines.
Them are four solid-heterogenuity. Uke "GO-MAGARI", this thme-dimentional structure w|ll
be expanded into unlimited quasi-crystallized network. This reminds me of plexus --t~ssues
of brain, I call this system a "HEXA-PLEXUS".
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Fig. 9. SP|RAL P~NTAGRAII
Fig. II. /~n unit of" |IEXA-PLEX~d$

I presented a solid structure called "STAR CAGE ~ (MU-MAGARI)" In 1993 (Figure 13).
Th=s quasi-periodicel model was made by innumerable rods.
Note that a "Penrose Weaving", presented by someone else, has a similar structure as
"MU-MAGARI".
L=ke "MU-MAGARI", "HEXA-PLEXUS" will also provide a new vision for quasi-periodical
models

Fig. I~. h’TAR CAGE ~’~J (gU-~IAGARI)
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¯ PLEIADES
I made a small work called "~J (subaru) = pleiades", with six pentagrams (Figure 14). Like
the Great Bear, the pleiades have been popular since old times

l’ig 14

¯DECA-PLEXUS
The "Poly-link" by A. Holden (Figure 10) Is constructed with ten tdangle frames. It can be
transformed like our "HEXA-PLEXUS". It must be a ten-fold structure like Figure 16. So it
might be called DECA-PLEXUS

I l!m 15 The Pt)I,Y-I,INK by A Ilo[dcn I =g. 16 I)I’,CA-I’I.EXI’,~

MIYATJ\KI, K. (1983) KATACH! TO KUKAN. AS~KUPJ~ SIlOTEN.
IIIZLDAE. A. (1993) STAR CAGE : T~e Exploration of the Golden Section,

KAT^CRI NO I{UNKA~SII! I , Z08-ZZ5, NOSAKUSIIf~.
R[ZUME, A. (1994) STAR CAGE : No~ Dimension of the Penrose-LaLtzce, Forma. 9. Z59-ZT2


	Symmetry Culture and Science Vol 6 Num 2 1995
	Special Issue: Symmetry: Natural and Artificial Extended Abstracts, 2
	Contents
	Lectures
	Symmetry and Movie Animation
	Fundamental Symmetries in Modern Physics and Their Limits
	Mathematical Models of Symmetry in Music
	Costa Minima Surfaces: D4 Symmetry Sculpture by Virtual Image Projection, Part I
	Costa Minima Surfaces: D4 Symmetry Sculpture by Virtual Image Projection, Part II
	Teaching Experiments as Evidence for the Hemispheric Paradigm
	Symmetry: The Needed Bridge Between the Arts, the Sciences and Their Mathematics, and the Humanities
	Displacement Vector Determination Through Use of Fringe Patterns Symmetry Properties Produced by Holographic Interferometry
	Symmetry in the Traditional Japanese Mathematics
	Formation of Patterns in Growth of Natural Snow Crystals
	The Use and Lure of Ruled Surfaces
	On the Biological Advantage of Chirality
	Real Riddled Basins
	Icosahedral B12 Arrangements in Boron-Rich Solids
	Hexa-Plexus
	Linking Sound and Color Spectra
	Symmetry of Musical Form
	The Dutch Graphic Artist M. C. Escher
	The Programmed Design: Probing the Discernibility of Properties of Symmetry
	Origami Tessellations
	Symmetry and Creativity: Individual Differences in Preference and Drawings
	Optimization on Chaotic Attractors
	Structures on the Edge Between Chaos and Order
	Symmetries in Celestial Mechanics and Modern Astronautics
	Mirror Generated Curves
	Homology: A Key to Morphogenesis
	Geometry of Venation and Origami Model of Leaves
	"The Proper" and "The Reversed" Right-handed Dynamism in the Japanese Tea Ceremony and Noh
	Dance Notation and Choreography
	Shaping Mind by Shaping Space - the Tetrahedron as Paradigm
	On the Study of Polyhedra in Wasan
	Semantic Aspects of Self-similarity in Music
	Tiling Process of Patterns
	Generalized Symmetry of Semiotic Systems in Science and Art
	Quantitative Estimation of Symmetry. Possible Ways of Application in Natural Sciences
	Geology Beyond Nature: Symmetry Cases in Culture
	On Restoring of Frameworks by Internal Stresses
	Sutured Grain Boundaries: Their Fractal Shape, Formation and Beauty
	"Perception" - Congruence
	Ambigrams: Graphic Symmetry in Language and Art, Science and Nature
	The Role of Symmetry in Mathematical Problem Solving: An Interdisciplinary Approach 
	Symmetries and Robotics
	Visual Mathematics as an Experimental Science
	Further Symmetries in Permutation-Generated Patterns
	Information Science and Symmetry
	Symmetry as an Emergent Property of Information
	Symmetrical Programs and Role Switching
	Symmetry and Insight: The Saga of Sphere Eversions
	Synergetic Aspect in Symmetry Evolution
	Symmetry, Power and Archiecture: The Social Meanings of Symmetry and Asymmetry in the Colonial Edwardian Architecture of the House in Southern Africa
	In the Wake of Chaos



