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The title LUDUS TONALIS could be translated as "Tonal game’. However, such a rendition

gives only part of the meaning implied in the Latin wording. The term ludus (from Latin ludere

= to play) can refer to three different scenarios: the playing of an instrument, the playing of a

drama on stage, and the playing of games. (~Historically, the word ludus often described medieval

liturgical dramas.) Hindemith probably had all three meanings in mind when he chose this

particular title: the work contains what appears to be an-almost complete array of keyboard

techniques and performance ’colors’; the capturing characteristics of many of the fugues and

interludes are suggestive of dramatic characters; and the entire cycle most certainly expresses

wonderful fun--fun for the composer who wrote this significant work within only a few weeks’

time, and fun for performers, especially for those who undertake to play the entire cycle.

The LUDUS TONALIS consists of twelve fugues which are linked by eleven interludes

and wrapped by a praeludium, and a postludium. This layout, with pieces on each of the twelve

semitones, recalls several forerunners. However, the tonal organization of the fugues is neither

chromatic (as in Bach’s Well-Tempered Clavier) nor in fifths and their relative minors (as in

Chopin’s or Scryabine’s 24 Preludes). Instead, Hindemith uses a tonal organization in which the

succession of twelve pitches is determined by their continually lessening relationship to the

central note C. Exploring this irreversible aspect of the work’s layout, and discovering the

patterns contained in it, will be a first step in approaching the cycle.

The framing pieces, "Praeludium" and "Posfludium" respectively, act as mediators

between the cona’asting aspects of irreversibility and symmetry. The Praeludium is built on two
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contrasting central notes: C (bars 1-32) and F~ (bars 34-47). This piece thus anticipates, as it

were, the entire tonal argument of the composition in contraction; it leaves us where the fugues

will eventually leave us--at the tritone. Having launched the LUDUS TONALIS with a piece

so fraught with allusions to the main body of the work, the question arises--and must have arisen

to Hindemith--what kind of finale would be a match, rounding off the cycle in a meaningful

way. Hindemith’s solution is ingenious; he composed the Postludium as a special kind of

retrograde inversion of the Praeludium: one in which the page can literally be turned upside

down (see the music excerpt on the following pages) and read backwards! While this may seem

as a fancy game, it constitutes in fact one of the most haunting compositional tasks--quite

certainly a good reason why, since Bach’s Art of the Fugue, no work of similar dimensions has

been written in this technique.

The twelve fugues and eleven preludes framed by these remarkable examples of musico-

visual symmetry are arranged in such a way as to establish various kinds of intricately mirroring

patterns, all the while attentive to the other aspects of the title word "ludus." Of the many

personas put on stage in this "play’, only a few can ~e mentioned here. In the first fugue, each

of the three subjects featured presents a distinct character which has considerable impact on its

surroundings. Subject 1 appears as serene and composed; it envelopes itself with very

harmonious chords. Subject 2 is sorrowful, expressing itself in a series of sighs followed by

gradual appeasement; it is wrapped in ’unresolved’ intervals and diminished chords. Subject 3

is aggressive; correspondingly it creates strong dissonances. When all three subjects finally meet,

laments and aggression seem absorbed by the soothing quiet of subject 1. In another scenario,

found in the fourth fugue, the outcome is quite different. A distinctly "male’, somewhat rough-

hewn first subject dominates the first section, while the second section exposes a very graceful,

soft and fragile second subject. When these two intertwine in the third section, the gentle

"female" turns into an angry bitch, causing some of the worst clashes in the entire cycle, clashes

which only subside as "she" leaves the scene and "he" regains sole control. Other fugues features

a seeker, a dancer, a Rococo courtier, a jester...
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The five Platonic solids - icosahedron, dodecahedron, octahedron, cube, and tetrahe-
dron - have been used as tools, toys, and decoration since 2000 BC [3]. They are distin-
guished by the fact that each face is symmetric to every other face, and each vertex is
symmetric to every other vertex. What other objects have these properties?

At the beginning of the seventeenth century, Johannes Kepler described two regular
"hedgehogs" with five pointed stars for faces [4]. If we allow edges of faces and faces
themselves to intersect we can describe a total of four new regular polyhedra, called the
Kepler-Poinsot polyhedra.

Kepler and Poinsot found new polyhedra by allowing the edges of faces and vertex
figures to intersect. In 1937, H. S. M. Coxeter described regular polyhedra in which the
vertex figures were non-planar "skew polygons". He went on to introduce.skew polyhedra;
polyhedra in higher dimensional Euclidean spaces. One example of such an object, dis-
covered by J. F. Petrie, can be described as follows. Identify opposite sides of a square
of side length n to form a torus. If the n2 unit squares covering this torus are considered
as a subset of the faces of the double n-gonal prism {n} x {n}, the resulting regular skew
polyhedron is a realization of the map {4, 4}n.0 [1, 2].

In 1977 Branko GrSnbaum described several regular polyhedra with skew faces, further
broadening the definition of regular skew polyhedra [5]. Skew polyhedra are interesting
because of their relationship to the beautiful Platonic solids, because the set of vertices of
a regular skew polytope is a family of evenly spaced points on a high dimensional sphere,
and because they provide us with hints about smooth embeddings of surfaces in Euclidean
space.

In our search for regular skew polyhedra, we are seeking geometric objects whose vertices
and faces are symmetric. If we omit the condition that our polyhedra must have geometric
realizations, such objects are known as "regular maps".
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A map is the decomposition of a two-dimensional surface (without boundary) into non-
overlapping simply-connected regions (faces) by arcs (edges) joining pairs of vertices in such
a way that edges meet only at vertices and every edge belongs to two faces, or two sides of
the same face [2]. A map is said to be regular if its automorphism group is flag-transitive.
The Platonic solids, the Kepler-Poinsot polyhedra, and the tiling of the torus by nz squares
described above all provide examples of regular maps.

Regular maps describe topological surfaces, not skew polyhedra. To get a skew poly-
hedron from a regular map, we need to find a set of vertices in Euclidean space such that
the symmetries permuting those vertices correspond to symmetries of the map. Faces and
edges of the skew polyhedron are defined by connecting these vertices as dictated by the
faces and edges of the regular map [6]. (Note that the faces and vertex figures of this skew
polyhedron need not be planar.)

Petrie’s skew polyhedron was formed by identifying opposite sides of a square to get a
torus. The vertices on this torus must somehow be embedded in Euclidean space in such a
way that the symmetries permuting those vertices match the symmetry group of {4, 4},.0.

If our square has edge-length 2re, the parametrization P2 : (x,//) ~ (ei*, eiy) sends it to
a torus in C~, the Cartesian product of two circles. (The function PI : t ~ e" wraps a line
segment of length 2~r around a circle. The function P2 wraps a square, the product of two
line segments, around a torus, which is the product of two circles.) Each vertex of {4, 4},,0
is sent to a point of the form (e2~i(j/~), ez~i(k/n)) with 0 < j, k < n.

The skew polyhedron described by connecting those vertices is regular because the tiling
of the plane by squares of side length 2:r/n is regular. Composing symmetries of the tiling
with Pu, we see that the symmetries of our skew polyhedron correspond to automorphisms
of {4, 4},.0.

Another regular map of squares on the surface of a torus is {4, 4}~,~. This is obtained
from the regular tiling the plane by unit squares by identifying opposite edges of the square
with vertices at (n, 0), (0, n), (-n, O) and (0, -n). We can again use P~ and an appropriately
subdivided square of side length 2r to get a skew polyhedron corresponding to the regular
map {4, 4}~,~ for each n.

As we have seen, there are several ways to regularly tile a torus with squares. We can



Figure 1: Rhombus tiled by triangles. 

also tile tori with triangles and hexagons. 
The regular maps of type (3, 6}b,0 are formed by identifying opposite sides of a rhombus 

tiled by 2b2 equilateral triangles. Identifying opposite sides of the rhombus in Figure 1 gives 
us the regular map {3,6)4,0. 

To make a torus out of a square of squares, we could roll the squares up into a tube 
then roll the tube into a torus. If we roll our rhombus into a tube in the same way, either 
the opposite sides of the rhombus do not meet exactly or the equilateral triangular faces 
get bent out of shape. We avoid these difficulties by embedding the rhombus in a cube and 
"rolling upn the cube. 

Figure 2 shows a rhombus cut in half and embedded in a cube. As before, a parametric 
equation is used to identify opposite faces of the cube. When the top and bottom are 
identified, the two triangles shown will connect to form a rhombus. Identifying the other 
pairs of opposite faces will bring opposite sides of the rhombus together to form a torus. 

The parametric equation P3 : ( x ,  y, z )  w (ei2, e*, eiz) sends a cube with edge length 
2~ to the product of three circles in @, identifying opposite faces. The vertices of our 
subdivided rhombus are sent to the vertices a skew polyhedron of type {3,6)4,0. 

The same techniques used to construct regular skew polyhedra of type {3,6)*,0 can be 
applied to find polyhedra corresponding to the dual map {6,3)b,o. Similar techniques give 
skew polyhedra corresponding to regular maps of type {3,6)b,s and {6,3)6,b. 



Figure 2: Rhombus embedded in a cube.

We can construct six infinite families of regular skew polyhedra by using the parametric
equations P2 and P3 to identify opposite edges of squares and rhombi. There are infinitely
many more regular maps to study; our search for regular skew polyhedra has hardly begun.
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