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RIDDLING: A PHENOMENON IN

DYNAMICAL SYSTEMS

James C. Alexander
Department of Mathematics

University of Maryland
College Park, MD 20742

Riddled and intermingled basins of attraction are a relatively recently no-

ticed phenomenon in dynamical systems and differential equations. Although

not necessary for its occurrence, riddling seems to occur most naturally in

systems with some kind of (discrete) symmetry. A chaotic system exhibits

sensitive dependence to initial conditions; however, usually the long-term

average behavior is robust, except for initial conditions near basin bound-

aries. In a riddled system, the long-term average behavior is also infinitely

sensitive to initial conditions. The name comes from the fact that the basin

of an attractor is infinitely riddled with points which do not tend to the

attractor. Riddled basins have no open sets-every point is a basin bound-

ary. Intermingled basins are basins for different attractors which are dense

in each other. Over the past several years, riddling has been observed in

several scientific contexts: visually (originally), mathematically (rigorously),

numerically (simulations), and experimentally (bench experiments). There
are philosophical implications for replication of phenomena, which have been

discussed in the popular scientific press under titles such as "Beyond Chaos."

This talk is a survey of these developments.
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A NEW EXAMPLE OF A FLEXIBLE POLYHEDRON

Victor A. Alexandrov
Sobolev Institute of Mathematics

Novosibirsk-90, 630090, Russia
E-mail: alex@ math.nsk.su

1. Introduction. A surface in the 3-dimensional Euclidean space
constituted by a finite set of polygons is said to be a polyhe-
dron. The polygons are referred to as faces of the polyhedron
and the sides of the polygons are referred to as i~s edges. We
suppose that exactly two faces are adjacent to every edge.
Shape and size of the faces will be considered to be unchange-
able, i. e. the faces will be considered as made from solid
plates. On the contrary, suppose we can vary dihedral angles
of our polyhedron. We’ll call our polyhedron a’flezible one, if
it is possible to change dihedral angles continuously in such a
way as to change the spatial shape of the polyhedron.
2. Survey of evolution of theory of flexible polyhedrons. One
can formulate the Definition 10 from Book XI of Euclid’s Ele-
ments [9] as follows: "Equal and similar solid figures are those
contained by similar planes equal in multitude and magni-
t, ude". Some authors use this fact to prove that Euclid have
pa~ssed through the notion of flexible polyhedron.
The first rigorous result on flexible polyhedrons was obtained
by A. L. Cauchy in 1813. In particular he has proved that
each convex polyhedron is not a flexible one [6]. Answering
the question whether non convex polyhedron can be flexible, in
1897 R. Bricard have constructed examples of flexible octahe-
drons (i. e. polyhedrons with 6 vertexes, 12 edges and 8 faces)
[5]. All of them have points of self-intersection. The problem
on existence of a flexible polyhedron without self-intersection
remains open for n long ti~ne even though it was interesting for
such outstanding mathematicians as Henri Lebesgue [12] and
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A. D. Aleksandrov [1]. Many mathematicians were sure that
it has the negative answer. Nevertheless in 1976 R. Connelly
[7], [8] have obtained the positive answer. Soon K. Steffen
has simplified Connelly’s example and constructed a flexible
polyhedron without self-intersection with only 9 vertexes (only
one more then the cube has) (see [3]). In 1994 I. Maksimov
has announced that the number 9 can not be replaced by any
smaller one [13].
3. Applications of flexible polyhedrons. In the paper [9] R. Con-
nelly discusses applications of flexible polyhedrons to building
mechanics. It is based on the intuitively clear reason that each
construction made from prefabricated ferro-concr~te items can
be regarded as polyhedron with rigid items-faces and change-
able dihedral angles at joints-edges.

In the articles [4] and [10] applications of flexible octahedrons
t,o stereo ’chemistry are discussed. The idea is that, the carbon
skeleton of the cyclohexane molecule may be represented by a
spatial hexagon with prescribed sides and angles. Replacing
each pair of sides with common vertex by the rigid trian-
gle with the same vertexes we obtain an octahedron. Thus
the problem weather the spatial hexagon is rigid or flexible is
equivalent to the problem weather the octahedron is flexible.
4. Open problems. By far the main goal is to obtain a criterion
for flexibility of polyhedrons, i. e. to obtain a rule which
will allows us to conclude after some finite set of operations
involving finite number of sizes of our polyhedron whether it
is flexible or not. As there are no direct approaches to this
problem, we’ll discuss the following partial problems:

¯ Does there exist flexible polyhedron in many dimensional
space?

¯ Is the set of flexible polyhedrons semialgebraic one in
the space of all polyhedrons of a prescribed combinato-
rial type, i. e. is it defined by a finite set of polynomial
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equations and inequalities?
¯ Is it true that each flexible polyhedron preserves volume

during the process of bending [9]? (The positive answer
for a class of combinatorial one-parameter flexible poly-
hedrons was announced by I. Kh. Sabitov [14] in 1994.
A flexible polyhedron is said to be combinatorial one-
parameter if it fails to be flexible after we fix spatial dis-
tance between two its vertexes that were not joined by
an edge.)

¯ Which functions except volume can be preserved by all
flexible polyhedrons? Can the mean curvature play this
role [2]?

Obviously, studying these problems it is useful to have exam-
ples of flexible polyhedrons. Connelly’s and Steffen’s polyhe-
drons are very elegant, but they are based on the Bricard’s
octahedrons. For better understanding of the problems it is
desirable to have examples based on other ideas.

5. Formulation of the result. In the present report we’ll ex-
plain a new example of a flexible polyhedron (with self-in-
tcrsection), that is a piecewise linear realization (but not an
immersion) of torus. The Bricard’s octahedrons are not used
in the construction. Flexibility of the polyhedron is deduced
frown the purely analytical reason --- from the fact that ev-
ery ~ational function can be expanded into a sum of proper
fr~ct.ions. We shall verify that, under some relations between
parameters of the construction, the polyhedron is flexible. It
turns out that precisely with these values of parameters our
polyhedron preserves volume and mean curvature during a
bending. For more details see [2].
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INFORMATION AND SYMMETRY IN THE CELLULAR SYSTEM
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1. INTRODUCTION

Very few approaches in theoretical biology have dealt with the cellular system in its
entire functioning [1]. In this work we try to develop the concepts of Information and
Symmetry within the framework of theoretical physics in order to be applied to the whole
dynamics of the living cell. We make a closer examination of the selective action
mechanisms of enzymes and enzyme networks ("the society of enzymes") and we study
how the concept of symmeta’y for a stochastic dynamical system [2] can help us "to map"
the information dynamics of the cell in relation to its environment. For this purpose, we
work out a "symmetry transformation" and ponder the possibility of "conserved
quantities" in the cellular system.

We also explore the interdisciplinary peculiarities this model-system shows within the
framework of both Physics and Biology, and how the emergent "Information Science"
can throw new light on the study of living beings (bioinformation).

2. THE CELL AS A "SOCIETY OF ENZYMES"

Certainly, the cellular system is one of the most complex entities --as we will discuss, it
is a genuine "society". Not only because of the heterogeneity of its components, the
complicated arrangements of interacting macromolecules in its subsystems, and the host
of physico-chemical processes involved, but on other hand, because it is a system not
quite amenable to experimental testing in its "in vivo" state [3]. Hence, simplified
approaches seem necessary, in both methodological and forraal aspects.

Biochemists and enzymologists have been taken as a matter of course that most
metabolic activity of the cell results from the superposition of action of individual
enzymes [4] dissolved in an aqueous phase, the dynamics being governed by simple
mass-action laws and random thermal motion of metabolite molecules in weak-electrolyte
solution. The cell (and each of the organelles therein) basically becomes a "bag" of
enzymes and metabolites operating in homogeneous solution. The unitary space-time [4]
events of the material transformations in such cell metabolism can be associated with
localized enzyme-proteins.
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In general, the action of enzymes entails two discrete stages: binding/recognition and
chemical catalysis. The sub~trate molecules must diffuse to the enzyme "active center",
where they bind selectively. The following step is the electronic transformation of the
substrate, taking into account the impact of effectors (activators and inhibitors) at the
binding sites and the influence of other the~rnodynamic variables (temperature, pH, etc.).

The above simplified approach allows us to see the cell as a "society of enzymes" [5]
which exchange material and info~xnation among themselves and with the environment. It
conduces us towards population-dynamics models not far away from the classical Lotka-
Volterra approach. We can model the enzyme "population" as a stochastic dynamic
system whose behaviour is described by trajectories within a state space.

The point of each trajectot’y at time t is determined by the n-dimensional vectorx(q,t).
We assume that the process yt=x(q,t) obeys a stochastic differential equation of
Stratonovich type.

dyt =B(Yt,t)dt+ y, Ar(Yt,t).dw~    (1)
r=l

Each component of this vector stands for the value of a population (occupation)
number, which has a certain measurable property qt that can change in time. The state of
this population is therefore an element of a certain vector space. In the course of the
dynamics of the system, the state vector should not leave this space.

B(yt,t) and Ar(Yt, t) are non-linear functions of Yt; dwtr is an m-dimensional stochastic
Wiener process. In (1) B(yt,t) con’esponds to the deterministic part of the process and
Ar(Yt,0 to fluctuating forces which depend themselves of the function Yt; the latter can be
interpreted as a "community matrix" too, its anti symmetric part corresponding to the web
of effectors (activators and inhibitors) and substrate-product transformation (e.g. the
transfer of free energy through the "society") while its symmetric part reflects a collective
dissipation.

Within this framework, the whole cellular dynamics can be understood as changing the
occupation number, e.g. entering (or acting) new points of q-space and leaving old ones
by means of the action of specific enzymes and network of enzymes.

3. SYMMETRY, INFORMATION AND COMPLEXITY

Let us now attempt an interpretation of the q properties of this enzyme population. The
exchange of information between the different enzymatic functions occurs through the
sharing and networking of substrates, products, activators, and inhibitors. This
complicated network of exchanges allows the emergence of an overall functionality for
the whole population of enzymes which can be extremely rich. (Here, we will not enter in
the complementary dynamics of protein synthesis, converter enzymes of the signaling
system, and the protein degradation phenomenon.)
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We can now formally discuss how every individual enzyme receives and sends [6] a
message. We can clearly distinguish between the reception of information through the
effectors and substrate, and the cartier of infom~ation, the product. This kind of "gradient
field" inside the cell can be "measured" by the individuals of the enzyme population.
Then, we take the q-space of the properties of enzymes, as the pattern recognition
capacity of this population which has its dynamics described by the equation (I).
Therefore, we can set the q’s as a state vector,

q(t) = [ql(t), q2(t) ..... qn(t)] (2),
as for the stochastic differential equations, we can write them in the form

dyt(q,t)=[ 8, +Qo lyt(q,t)+ ~Q~yt(q,t).dw[ (3),
8where:

~ differential o~rators defined by (4).
We e~ s~ the ~uafion (3) as a synunet~ tran@rmation for ~e pr~s defined by

¯ e temporal change of a point in the q-space, cons~uently ~e dynamics of q(0 must
obey,

dq(t)=B(q(t),t)dt + E Ar(q(t),t)’dw[ (5),

wi~; q(~)~(a), t~ [~], where a is a order paramemr.
It c~ be demonstra~d [2] ~at the condition for (3) being a s~met~ ~sfo~afion of

(5) is ~at ~e function satisfies

B(yt(q,t),t)=[ 8o +Qo lyt(q,t) and

A,(y~ (q,t),t) = Q’Yt (q,t)
(6)

In this context we can consider the Yt as a "conserved ~uantities" for any system
having its dynamics described by (5). In a similar fashion, this means (in our
interpretation) that if the receiver properties of the enzyme can be described as a stochastic
dynamical system (5) we can make a transformation to a population space the "form" of
which (5) is invariant (under this transformation).

4. CONCLUDING REMARKS

The above mathematical description .just maps an abstracted aspect of the "territory" of
biomolecular information processing and control [7]. By following this approach, we can
further formulate the notion of symmetry operator [2] which yields a more general
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conserved quantity for the system, which in its turn can help us to find other possible
conserved quantities. The explicit form of the process yt=x(q,t), as well as its component
functions B(yt, t) and Ar(Yt,t), will be the subject of future enquires.

The use of theories based on the intrinsic synunetries in the space-time structure of the
natural world has been a fruitful strategy of physics in its attempt to unify its various
levels of complexity. Among the symmetry principles of physics, the most abstract one is
the set of "gauge symmetries". In this respect we can speculate how "form" (structure)
and function are invariants under a gauge transfo~xnation (e.g., specific recognition).

It is a reasonable approximation to consider the populational species as being in quasi-
stable equilibrium of growth with respect to its environment. The "chemical fields"
(effector and substrate web), which are invariant to the gauge transformation, compensate
for any local change of any "enzymatic field" within the populational number, and
preserve (save) the global invariance. A local input in this system is a factor for a change
in "local condensation" - nucleation. Through this nucleation process, the symmetry of
the system suddenly and spontaneously lowers, and it does so in a non-predicable,
random event. The symmetry of the system is "broken". In this context the enzyme
populational action emerges as a "thermodynamic coordinate"--because of a fundamental
symmetry’ p6nciple grounded in the concept of broken symmetry.
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Ir~NCTIONAL BRAIN ASYMMETRY IN PAINTING CREATIVITY AND RHYTHMS
IN PAINTING EVOLUTION
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In modern psychology of creation is conceived a new
scientific trend - a study of creative processes and thelr results
in the light of the functional assymetry of human cerebrum
hemispheres. A detailed study of functional pecularlties of each
hemisphere gives evidence that a prevalence in psychological
activity of a left hemisphere is characterized by the features of
analytics, rationality, verbalization, whereas at prevalence of
right-hemlspherlcal processes - a creatlve activity is
characterized    by intuitiveness, figurativeness, synthetical
character [4]. Thus the motives are provided for separation of the
two polar types of creative process~ which one can conditionally
call the left-hemlspherlc (L-type) and the rlght-hemispherlc
(R-type). Certainly, the relative prevalence of one of these
characteristics is apparent, but not the absolute domination of
one process by another.

A predominance phenomenon of one from two (L- or R- ) types
was examined upon material of creation in such different spheres
as music [21], architecture [4], and others [5]. In recent
investlgatlons [I], characterlstlcs have been found in artists’
work that can be interpreted as indicators of the domination (in
the creativity of these artists) of one of two components: drawing
style or colour. From the neurophislologlcal polut of vlew, these
two styles can be attributed, respectively, to L-type (analytic)
or to R-type (synthetic) domInation o£ brain activity.

Ten parameters of painting were chosen (throgh several
methods, lncludlng factor analysis) to descrlbe the domination of
the processes discussed above:



43

DRAWING STYI~ PARAMETERS
I. Inclination toward normatlvlty

2.Ratlonality
3.Strict form
4.Limited express means
5.Dominance o~ grafic features

6.Steadiness, static features

7.Discrete elements

8.Inclination toward cool part
of spectrum

9.No gradation within each color
element
10. Smooth painting

COLOR STYLE PARAMETERS
Inclination toward
originality
Intuition
Free form
Diversity of express means
Pictureusqueness-dominance
of coloristic features
Expressive, dynamic
features
Continulous transitions
between elements
Inclination toward warm part
of spectrum
Much color gradation

Texture painting
Domination of color style under drawlng style means that the

number of features referring to drawing style (nl) more then the
number of parameters, referring to color style (nr).

In our investlg~ations with    Vladlmir Petrov, 240 artists
(both Western European and Russian) from the fifteenth to the
twentieth centuries were studied. Each artist may be characterized
by "index of asymmetry":

K=~nr-nl
nr+n1

This index changes from +I ("pure" drawing style) to -I ("pure"
color style).

Twenty-two experts defined the stylistic features of the
artists thru~ the use of these 10 paremeter.

These date were used in a large-scale investigation concernlng
evolution of Westerm-European and Russian scools of painting
during 1430 - 1930-years from the point of view of two types of
mentality. In order to facilitate the calculations, a database
(DEase 111+) of the 240 artists and the average values for the
parameters was created with the step ~=3 yers.The resulting curve
for "index of asy~netry" is shown on Figure I.
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Fig.1 Cycllclty in painting evolution
Cyclic processes are typical in the evolution of art.    The

similar investigations was done for the evolution of m~sic [2] and
cyclicity was also obtained.

Mathematical description of this phenomenon can be based on
the modification of equations for competitive interaction
(Lottka-Volterra equations) as has been accomplished for the study
of the interaction of three spheres of motlon-plcture culture:
cinema, television and video [3], where cycles also take place.
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