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FOREWORD

This paper is based, with only minor modifications, adjunctions and suppressions,
on an handwritten manuscript of 1982 which was sent at this time to some folders
interested in mathematics. This led to correspondence with at least two of them:
professors Kodi Husimi and James Sakoda. The first one has seemingly considered
a particular case of what I call a ’perfect bird base’ in his book, in Japanese, Origami
no Kikagaku (The Geometry of Origami, Tokyo: Nippon Hyoronsha, 1979). The
second one has made use of perfect bird bases in his magazine Mac Origami and in
his book Origami Flowers Arrangement (published by himself, 1992) and has devised
a good approximate method to find the ’origin’ of the perfect bird base.

1 INTRODUCTION

When we fold the traditional bird base (Orizuru K/so, in Japanese) we find that it
has agreeable properties, for instance the flaps are easy to move. But try with a
rectangle: the result is less satisfactory. We shall examine the possibility of folding
’good’ bird bases with polygons of various shapes. Afterwards we shall try a similar
approach for the frog and the windmill bases.

2 DEFINITIONS

The polygons to be studied need not be convex. Let Ar42...An (Figure 1) be a
polygon, and O a point inside it such that the triangles AIOA2 and so on do not
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overlap each other (the polygon is said to be star-shaped from O; if it is concave,
some points O do not work). We call preliminary base the result of bringing OA1,
OA2 .... , OAn together by mountain folds, and origin of the base the point O (Figure
2). Of course, when flattening.~_he model_valley folds must appear, say OMI, OM2,
... and we have (Figure 1) AIOM1 = M~IO~2 and so on. In the preliminary base, O
and the verticesA~,A2 .... lie on a line, and the flaps like OA2MIA~O can be book-
folded with that line as a hinge. Now, let us make a reverse fold on each flap, with
the condition that the creases pass through the corresponding vertices, for instance
through A1 and A2 for the flap OA2MIAIO. We shall call the result a bird base
(Figure 3). See Figure 4 for the creases on the unfolded paper, and remark that the
sides ,4./1i+~ of the polygon have been folded at points Ei that differ, generally,
from the Mi’s (for ease of notation we consider that ,4n+1 = ,41 and so on). The
bird base retains the above-mentioned property of the preliminary base, that O and
the Ai’s lie on the same line A, which is an axis of rotation for the flaps like
OPv4~A20. Now, let us say:

Figures 1-3

Definition: A bird base (Figure 5) is perfect if:
(a) the triangular flap PIA2P2 can be bookfolded with P1P2 as a hinge, and so on for
the other flaps.
(b) when P1A2P 2 has been folded ’downward; A2 is in a new position A’ which lies on
A and so on.
(c) the flaps like P1A2P 2 consist everywhere of, exact(V, two layers of paper, that is the
triangles A2P1E1 and A2P2E2 of Figure 4 are adjacent without gap or overlap.
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Of course, such properties are among the good ones of the standard bird base,
some others being let aside because they are too specific of the square.
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3 PERFECT BIRD BASES

Figure 6 shows the hidden reverse folds. By property (c), the points h2, El, E2 lie
on the same line. Let H2 be its intersection with PIP2. By property (a), E1 and E2
m~t be on...the side of P1P2 which do~ not con_tain A2. So we have:
P1E1A2 <_ P1H2,,I2 (triangle P1E1H2), and P2E2A2 _< P2/-/2A2, hence

(1)

with equality only !f E1 and_~E are H2. Adding up the n inequalities like (1) and
remarking that P.~.r,li + P.rE.t,4i+l = ~r, we get: n~r _< nzr. That inequality being a
true equality, (1) must be also an equality. Hence E1 and E2 coincide with H2.
Now, fold the flap P~A2P2 downward, giving PtA’P2. The sideA1A2 of the polygon
lies now at the position A1H2Ao. But it is now completely unfolded, and so H2 lies
on the (straight) line A1A’, that is on A by property (b). Of course, also, PIP2 is
perpendicular to A2H2 at H2.

Figure 7

Now, let us look at Figure 7 which shows the above results on a part of the
unfolded paper. We see that P1, for instance, is the incenter of the triangle OAIA2,
that is the intersection of its inner bisectors. The circle inscribed in OA1A2 has P1
for center and touches the sides of the triangle at H1, El, H2. Actually that is
exactly the consequence of folding OA1A2 by a rabbit ear procedure, but here we
have the important fact that the circles inscribed in OAIA2 and OA2A3 touch 0.42
at the same point H2. We are now in a position to state:
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Theorem: Given a polygon A1A2...An,
(a) there exists a perfect bird base with origin 0 if and only if there exist positive
numbers r and e1 ..... en such that

ei+ei+l=AiAi+l for 1 <i<_nandei+r=OAiforl_<i<n (2)

(b) the conditions in (a) are equivalent to the following one:

OAi - OAi+2 = Ai+1 Ai - Ai+1 Ai+2 .for 1 _< i <_ n (3)

(c) the polygon has at most one perfect bird base.

Proof of (a): If the base with origin O is perfect, Figure 7 shows that the circle
inscribed in OAr42 touches the sides at El, HI, H2. So we have
OH1 = OH2 = OH3 = ... = r, andA1H1 = AIE1,A2E1 = A2/-/2 =A2E2. So, putting

AiHi = ei for 1 -< i _< n, we have the relations (2).

Reciprocally, if the relations (2) are satisfied, the three circles (O; r), (A1; el),
(A2; e2) (where the first letter is the center and the second one is the radius) touch
each other at points H"1 on OA1,/-/’2 on OA2, E’1 on AIA2. It is easy to see that
these points are on the circle inscribed in OA1A2, and so, we have the configuration
for a perfect bird base as given in Figure 7.

Proof of (b): If the relations (2) hold, we have: OAi.- O.~/+2 =

= ei - ~’+2 = (~ + ~+1) - (ei+2 + ei+l ) = Ai+lAi -Ai+I Ai+2, so relations (3)
are satisfied. Reciprocally, suppose that (3) holds. Put (OA1 + 0.,42 -
- A1A2)/’2 = rl, (OA2 + OA3 - A2A3 )/2 = ~, and so on. Then ~i = ~ .... = ~ is
an immediate consequence of (3). Let r be the common value of the ri and put
ei = OAi - r. Then, for instance: e1 + e2 = OA1 + OA2 - 2r = OA 1 + OA 2 -
- (OA1 + OA2 - A1A2 ) = A1A2. So r and the ei’s satisfy (2).

Proof of (c): Suppose that O and another point U are the origins of perfect bird
bases. Let X be the perpendicular bisector of OU. As 0 and U are in the interior of
the polygon A1A2..dln, there is at least one vertice that lies in each of the open
(that is not containing X) half-planes (~2 ; O) and (~; U). On the other hand, the
relations (3) in the above theorem give: OAi - O/1/+2 = Ai+IA/ -Ai+lAi+2 =
= UAi - UAi+2, so we have: OAi - U,,~ = OAi+2 - UA~+2 . ThenA~ andA~+2 are
on the same side ofX. So, A1,A3,A5 .... are in one of the half-planes (X; O), (X; U)
and A2, A4, A6 .... are in the other one. So ~ crosses every side of the polygon. If
this one is convex, this is impossible because S crosses the border at two points in
this case. If the polygon is concave, it must have a re-entrant angle, likeAIA243 in
Figure 8. But then, O and U must lie in the angle ~ because OAi, OA2, OA3,
UA1, UA2, UA3, are in the interior of the polygon. ThenA2,A1, orA2,A3 are on the
same side of X, a contradiction (for brevity’s sake, some details have been omitted).
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So there is at most one perfect bird base for any polygon. We propose, if it exists, to
call its origin the ’point of Loiseau’ of the polygon (L’oiseau: French words for: the
bird).

Figures 8-9

Corollary 1: For any triangle there is exactty one perfect bird base. Its origin can be
constructed with ruler and compasses.

Proof: In Figure 9 we have e1 + e2 = A1A2, and so on. Then El, E2, E3 are the
points where the circle inscribed in AIA2A3 touches the sides. Describe the circle
(hl; el), that is the circle with center A1 and radius el, and in the same way, the
circles (A2; e2), (A3; e3). Then by the relations ei + r = OAi, 0 must be the center of
a circle that touches the three preceding ones. Therefore, O can be obtained by
elementary geometry. Here is one possible construction (deduced from inversions
with centers El).

Let G1 on the line A1A2 be such that (A1; A2; El; G1) is harmonic. Describe the
circle ((71; G1E1). It meets the circle (A3; e3) at H3 within A1A2A3. Similarly,
construct HI, H2. Then O is the point of intersection of the lines A1H1, A2H2,
A~/-/3.

When the triangle is isosceles, AtA2 = A1A3 (Figure 10), it is easier to construct
the point of Loiseau. Describe the circle with centerA1 and radius IA1A2 - A2A3 I.
It meets the medianA~E2 at two points, X and Y. Trace the perpendicular bisector
either ofA2XifA1A2 > A2A3, or of AYif not. It meetsA1E2 at O.

Corollary 2: The quadrangle AIA2AsA4 has a perfect bird base if and only if
A1A2 + A3A4 = A2A~ + A4A1. Then the origin 0 lies at the intersection of two
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branches of hyperbolas. In the case where AIA3 is an axis of symmetry, 0 is the point
where the circle inscribed in AIA2A3 touches A1A3.

A,

Figures 10-12

Proof: If O is the origin of a perfect bird base (Figure 11) we haveAzA1 -A2A3 =
OAI -OA3 = A4A1 -A4A3. This impliesAIA2 +A3A4 =A2A3 +A4A1.
Reciprocally, if that condition holds, then A2 and A4 lie on the same branch of
some hyperbola with focuses A1, A3. Similarly A1 and A3 lie on a branch of
hyperbola with focuses A2 and A4. These two curves intersect at some point O
within the quadrangle. As O satisfies the conditions (3) of the theorem, it is the
origin of a perfect bird base.

In the case where hlh3 is an axis of symmetry (Figure 12), the hyperbola passing
throughA1 andA3 becomes the lineA1A3, and then, OA1 - OA3 = A2A1 - A2A3
shows that O is the point of contact ofA~A3 with the circle inscribed inAIA2,43.
Remark: If the quadrangle is convex the condition on the sides is equivalent to the
condition that it is circumscribed to some circle.

Corollary 3: (a) If the po~gon A1A2...An, with n even, has a perfect bird base, we
must have:

AIA2 - A2A3 + A3A4 -...+An_1 An - An A1 =0"
(4)

(b) If the po~ygon AIA2...An, with n odd, has a perfect bird base with origin O, then 0
can be constructed with rules and compasses.

(c) Given a point 0 it is easy to construct irregular polygons with n sides having a
perfect b~rd base with origin O.
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Proof: (a) If n is even, the system of equations ei + ei+1 = AiAi+1 (1 _< i -< n) has
solutions only if (4) is true.

(b) If n is odd, we can find the Ei’s by solving the preceding system for the ei’s.
After, the point O can be constructed almost as we did for the triangle.

(c) Describe a circle C with center O (Figure 13), then a circle C1 externally tangent
to C, then a circle C2 tangent to C and C1, then a circle C3 tangent to C and C2,
always externally, and so on; at last Cn tangent to C, Cn_1 and C1. Join together the
centers A~, A2 .... , An of the circles. We get a polygon having a perfect bird base
with center O.

Figure 13

4 FROG BASES
LetA1A2...An be a polygon, and Bi a point on the side A.tAi+1 for 1 _< i _< n. We
shall say that a bird base for the polygon AIB1A2..-4nBn is a frog base for the
polygon A1A2...4n. A frog base is said perfect if the corresponding bird base is
perfect. We have the following

Theorem: If 0 is the origin of a perfect frog base for a polygon A1A2...An, then B1 is
the point where the circle inscribed in AIOA2 touches A1A:~ and so on.

Proof: (Figure 14). The relation (3) applied to the associated perfect bird base
gives Br41 - BaA2 = OAx - 0.42, so that the circle inscribed in A~ OAz touches
A IA2 at B~.
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Figures

Corollary: For a rhombus, the center of symmetry is the origin of a perfect frog base.

Proof: (Figure 15). With O at the center, choose the Bi’s as above (for instance
fold the perfect bird base of the rhombus, then the Bi’s are the Ei’s of Figure 7).
Then by symmetry OB1 - OB2 = A2Ba -A2 B2 (= 0) so that O is the origin of a
perfect bird base for the octagon AIBIA2..~B4 , that is a perfect frog base for the
rhombus.

5 A PROBLEM

Figures 16-17
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The following property was found when trying to make irregular frog bases.

Problem: Let OAB be a triangle and M be an arbitrary point onAB. Let I and J be
the incenters of the trianglesAOM and BOM. Show that the circle with diameter IJ
meets AB at M (of course) and at a second point, P, which does not depend of M
(Figure 16).

Hint for a geometrical proof. Project I and J orthogonally on AB at H and K,
computeAH andAK and remark that HK and PM have the same middle.

Origami solution of the problem. Mountain fold along OI an~d, OJ, then petal fold
along IJ, which gives Figure 17. As PB and PA are adjacent, JPI = ~r/2. So P lies on
the circle with diameter IJ. But PA + PB = AB, and also PA - PB = OA - OB, so
the point P of AB does not depend of M.

6 WINDMILL BASES

Figures 18-19

In current terminology of folders the windmill base made from a square is either
the windmill itself, or the quadruple preliminary base obtained by squashing the
four points of the windmill. Here we use the first meaning. Let .A1A2...An be a
convex polygon (Figure 18), O a point in its interior and Mi a point of the side
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A.tAi+I, for 1 _< i _< n. Let us valley fold the polygon in such a way that all the Mi’s
come to O. If we pinch the comers and fold them fiat (Figure 19) we shall call the
result a windmill base defined by O and the Mi’s. The main property is that the flap
containingA1 can be bookfolded with OD1 as a hinge, and so on. Figure 18 shows
that D1D2 is the perpendicular bisector of OM~. The creases D2M~ and D2M2
correspond to the hinge of the flap A2, as they coincide with D20 when the base is
folded. Last, when we have flattened the flap A2, an extracrease has appeared, say
D2X2, which is the perpendicular bisector ofM1M2.
Now we shall say that the windmill base is perfect if, for 1 _< i _< n, the line D-~"i
coincides with the line D.rAi. This amounts to saying that the flap AiXiD~O is a
triangle, or consists everywhere of two layers. We have the following

Theorem: Given a convex po~ygon A1A2...An, the points 0 inside and Mi on the sides
AiAi+l,for I <_ i <_ n, de.t-me a perfect windmill base if and on~ if."
(1) there exist positive ei’s such that ei + el+1 = AiAi+1 and AiMi.1 = AiMi = ei;
(2) 0 lies outside every circle (Ai; ei);
(3) 0 lies inside every circle (MiMi+IMj), for I <_ i, j _< n; j ;~ i; j ;~ i+l, where
(PQR) denotes the circle circumscribed to the triangle PQR.

oO

Figure 20

Proof: (a) The conditions are necessary. In the unfolded perfect windmill base
(Figure 20), D;yl2 is the perpendicular bisector of M~M2, so A2M~ and A2M2 have
the same length, say e2, and the ei’s satisfy (1). NowA2 and O must lie on opposite
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sides ofDiD2, soA20 > A2M1 = e2, and then conditions (2) are satisfied. Last, the
polygon DID2..J)n must be convex with O inside it. So O and Di lie on the same
side of D1D2 for i # 1, i # 2. So M~/~ > Di O. But Di is the center of the circle
(Mi.lMiO). So M1 lies outside this circle. But if we remark that O and M 1 lie on
the same side of Mi.IMi (opposite to Ai) this is equivalent to the fact that O lies
inside the circle (Mi_IMiM1). So conditions (3) are satisfied.

(b) Reciprocally, if the conditions (1), (2) and (3) are satisfied, then, by reversing
the arguments above, we see that the perpendicular bisectors of OM1 and OM2intersect at some D2 on the inner bisector of A1 ~"~2A3, and that the polygon
D1D2..~Dn is convex and contains O. So, by valley folding along D1Dz..J)n we
obtain a perfect windmill base.

Corollary: lf a convex po~ygon is circumscribed to a circle, then it has infinitely many
perfect windmill bases.
(Proof left to the reader).

Remarks: (a) the conditions (1) can be satisfied if and only if the lengths A.~li+1
satisfy some conditions easy to state (solve ei + ei+1 = Aiai+1 and write that the
ei’s are positive). It is also equivalent to say that the polygon A1A2...4n can be
deformed by modifying its angles but not its sides, so that it become circumscribed
to some circle.

Coordinates: A1 (0, 14), A2 (-16, 8)
A3 (-8, 0), A4 (8, 0), A5 (16, 8), O (12, 7)

Figure

(b) when conditions (1) are satisfied, the region corresponding to conditions (2),
that is the intersection of the inside ofAy42...4n with the outside of all the circles
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(hi; ei) is not empty. Though rather intuitive, this fact is difficult to prove. Maybe it
could be proved by a continuous deformation of the polygon in the way said just
above. In any case, it follows easily from the proposition hereafter which can be
proved by methods of Graph Theory.

Proposition: Consider a convex polygon AIA2...An and real numbers ai associated
with its vertices, such that AiA~+1 >_ ai + ai+1 for I < i <_ n (with the convention
that an+/ = al). Then there exists at least one vertice Ai such that AiA~ >_ ai + ajfor
all i # j.

(c) However it is not always possible to satisfy both (2) and (3), or even (3) alone.
Try for instance to fold a windmill base defined by the Mi’s and O of Figure 21.
You will obtain interesting results, but not exactly as wanted.

7 CONCLUSION

Many geometrical problems arise when one tries to generalize the traditional
origami bases. We have studied here some natural generalizations. Bases with
irregular polygons or with polygons with many sides are probably of little use in
Origami. However some may be amusing. For instance fold a kite base from a
square, then fold the kite into a perfect bird base, then pull out the two corners of
the square that had been folded first. With this ’kited bird base’ you can fold a
flapping bird with long neck, short tail, medium-sized wings and small legs.
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