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Abstract." Earth scientists have measured fractal dimensions of surfaces by different
techniques, including the divider, box, ~iangle, slit-island, power spectral, variogram
and distribution methods. We review these seven measurement techniques, fuuting that
fractal dimensions may vary systematically with measurement metho~£ We discuss
possible reasons for these differences, and point to common problems shared by all of
the methods, including the remainder problem, curve-flttinb orientation of the mea-
surement plane, size and direction of the sample. Fractal measurements have been
applied to many problems in the earth sciences, at a wide range of spatial scales.
These include map data of topography; fault traces and fracture networks; fracture
surfaces of natural rocks, both in the field and at laboratory scales; metal surfaces;
porous aggregate geometry; flow and transport through heterogeneous systems; and
various microscopic surface phenomena a~sociated with adsorption, aggregation, ero-
sion and chemical dissolutiot~ We review these applications and discuss the usefulness
and limitations of fractal analysis to these ~ypes of problems in the earth sciences.
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I. INTRODUCTION

Fractal theory has been applied in many earth science disciplines, including geol-
ogy, geochemistry, geophysics, geomorphology, geography, hydrology, and soil sci-
ences, and at a wide range of spatial scales, from mega-scale observations of plate
boundaries such as the San Andreas Fault, t~ micro-scale studies of pore and
molecular structures. The word ~actal’ and the systematic study of fractal geome-
try began with Mandelbrot’s research at IBM in the 1ff70’s, culminating in his book
Les Objets Fractals (1975), followed by The Fractal Geometry of Nature (1982). The
fractal dimension is one of the main parameters of fractal geometry (Mandelbrot,
1982). There are different definitions of the fractal dimension and several tech-
niques have been developed for measuring fractal dimensions of surfaces. One
objective of this report is to review the methods which have been used in earth sci-
ences to measure fractal dimensions of surfaces, and to compare the results of mea-
surements made of the same surface by different methods. We also evaluate the
problems involved in the use of different methods, and discuss the usefulness of
fractal measurements, given the error and variability of measurements for a given
surface.

In addition to the different methods, we review applications of the fractal theory to
research in the earth sciences, and discuss some of the problems with these applica-
tions. We would like to identify where more work is needed in both the theory and
application of fractals to natural surfaces in the earth sciences. We focus on the
applications of fractal geometry to nearly-planar surfaces (with Euclidean or topo-
logical dimension DT = 2). General reviews of the use of fractal geometry to
pointed (DT = 0), linear (DT = 1), planar (DT = 2) and volumetric (DT = 3) sub-
jects can be found in (Avnir, 1989; Falconer, 1990; Feder, 1988; Jullien and Botet,
1987; Mandelbrot, 1982; Martin and Hurd, 1987; Meakin, 1991; Peitgen and Saupe,
1988; Turcotte, 1992; and Vicsek, 1989). Readers, not familiar with the general
concepts of fractai geometry, fractal dimension and self-similarity, may find their
definitions in (Vicsek, 1989; Mandelbrot, 1982).
This review was motivated by our interests in quantifying experimentally deter-
mined aperture distributions of natural fractures bounded by rough rock surfaces
(Cox et aL, 1990) and in studying theoretically the use of fractal geometry and geo-
statistical models to represent rock fractures (Wang et al., 1988). When we tried to
use different models to represent rough surfaces and used different methods to
determine the fractal dimension and other geostatistical correlation structures, we
found out that the determination of the fractal dimension of a surface was not triv-
ial. A review of the literature shows that similar difficulties have been encountered
by many other researchers applying fractal geometry to natural surfaces.
One of the most critical problems for fractal measurement and applications is the
ability to recognize and correctly measure the fractal dimension of self-affine natu-
ral surfaces. Thus, we will briefly summarize the concept of self-affine fractal sur-
faces before describing the measurement methods.
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1.1 Self-AlIine Natural Surfaces

Natural phenomena, such as landscapes or fracture surfaces, are more likely to be
self-affine, rather than self-similar, because processes producing the topography
vary in different directions (anisotropy). For example, basin and range topography
typical of Nevada and southeastern California, consists of horst and graben struc-
ture (uplifted mountain ranges adjacent to downfaulted basins) along a northeast-
erly trend. The pattern of a profile traced along the northeasterly trend would be
very different from that measured perpendicular to the trend. Superimposed on
these strong tectonic geometric patterns are the cumulative modifications by cli-
matic factors due to wind, water, and gravitational forces. The patterns created by
these climatic forces will scale differently, both spatially and temporally, from the
pattern due to the tectonic processes. If there is a statistical scaling relationship to
the patterns, this relationship will most likely differ depending on whether the pat-
tern is measured along horizontal cuts (contours) or vertical cuts (profiles). Thus,
these landscape or geomorphic surfaces preserve a consistent scaling relationship
only if one considers the vertical and horizontal orientations separately.

1.2 Fractai Dimension of Self-Affine Surfaces

In general, fractal dimension provides a description of how space is occupied by a
particular curve or shape. The fractal dimension measures the relative amounts of
detail or ’roughness’ occurring over a range of measurement intervals. The more
tortuous, convoluted and richer in detail the curve, the higher the fractal dimen-
sion. Figure 1 shows three profiles with different fractal dimensions, demonstrat-
ing the visual appearance of a positive correlation between roughness and fractal
dimension. Yet. roughness and fractal dimension are not synonymous. Roughness
is generally measured as the average variation about the mean value, and is not re-
lated to the scale or changes in scale of measurement. Fractal dimension is used to
quantify the variation of the length or area or volume with changes in the scale of
measurement interval. Fractal dimension is an intensive property while roughness
is not (Avnir et aL, 1985). (An intensive property, such as temperature, pressure,
or fractal dimension, does not depend on the amount of material present, while an
extensive property, such as volume and roughness, does depend on the amount of
substance in the system).

If a surface is sliced vertically or horizontally, the resultant vertical profile or hori-
zontal contour provides a curve which can be analyzed for fractal character. For an
exact self-similar fractal curve, the length L is proportional to r x N(r) which is
proportional to r1 - D~. Thus, the fractal or similarity dimension

D~ = in(N)/In (I/r). O)
where N is the number of non-overlapping measurement elements of length r
needed to cover the curve. Ds is usually greater than the topological dimension for
a flactal object, and always less than the embedding dimension d (the Euclidian
dimension of the space in which the fractai curve can be embedded; Vicsek, 1989,
p. 10). This relationship can be generalized for a statistical fractal analysis of verti-
cal profiles, with the x-axis along the length of the profile, and the y-axis the height
of the profile. The procedure is described in detail in Voss (1989). In brief, divide
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a unit distance along the x-axis into N segme~nH~ of size Ax ----- 1/N. For each seg-
ment, the typical y variation will be Ay = A~ , the length along each segment,
r ~ (Ax2 + Ay2) ~, and the total length L is proportional to (1 + ~x 2H-2)~ For
small measurement resolution (A~ <~ 1), the length L is proportional to A~H-~.
H is the Hurst exponent frequently used in describing fractional Brownian motion
and 0 < H < 1 (Voss, 1989). The self-similar fractal dimension Ds -- 2 - H.

0=1.2

Figur~ 1: Profiles with different fractai dimensions. Profiles are samples of fractional Brownian motion.
From (Peitgen and Saupe, 1988).

The horizontal contours of a natural surface may be self-similar, but the vertical
profiles are usually self-affine. For self-similar fractal sets, there is one fractal
dimension; for self-affine fractal sets, there are many different fractal dimensions,
some local and some global (Mandelbrot, 1986a). For a self-affine curve, measure
N equal intervals of Ar along a unit distance of the x-axis. The variance of the
height y(x) is statistically self-affine when x is scaled by X, and y is scaled by ), ~.
~, is the ratio of the scaling in the two coordinate directions. Thus

-- x
The crossover scale separates the global from the local dimensions for self-affine
fractal surfaces (Mandelbrot, 1986a). The measurement interval Ax must range
over values much smaller than the crossover scale to measure the local fractal
dimension DL = 2 - H. If the measurement interval approaches or exceeds the
crossover scale, the fractal dimension will be 1.

2. MEASUREMENT OF FRACTAL DIMENSION
Numerous measurements of fractal dimensions on natural surfaces appeared in the
published literature soon after Mandelbrot’s two volumes (1977, 1982). We have
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Method Reference Application

Divider Norton et al., 1989 Granite Mountain Profile
Divider Snow, 1989 Stream Channels
Divider Aviles et al., 1987 San Andree.s Fault Trace
Divider Brown, 1987 Rock Fracture Surface
Divider Carr~ 1989 Rock Fracture Surface
Divider Miller et al, 1990 Rock Fracture Surface
Divider Underwood and Banerji, 1986 Steel Fracture
Divider Akbarieh et M., 1989 Erosion of Ca-oxal. crystals
Divider Kaye, 1985 Carbon particles
Divider Kaye, 1986 unpolished Cu surface
Divider Kaye, 1986 polished Cu surface

Box Barton and Lassen, 1985 Rock Fracture Network
Box La Pointe, 1988 Rock Fracture Network
Box Miller et al., 1990 Rock Fracture Profile
Box Hirata, 1989 Japan Fault Network
Box Okuba and Aki, 1987 San Andreas Fault Trace
Box Sreenivazan et al., 1989 Turbulent Flow Interface
Box Langford et al., 1989 Epoxy Fracture
Box Langford et al., 1989 MgO Fracture

Triangle Denley, 1990 Gold Film Surface
Slit-Island Meeholsky and Mackin, 1988 Chert Fracture
Slit-Island Schlueter et al., 1991 Sandstone Pores
Slit-Island Schlueter et al., 1991 Limestone Pores
Slit-Island Huang et al., 1990 Steel Fracture Surface (lakes)
Slit-Island Huang et al., 1990 Steel Fracture Surface (islands)
Slit-Island Mandelbrot et al., 1984 Steel Fracture Surface
Slit-Island Pande et al., 1987 Titanium Fracture Surface
Slit-lsland Langford et aL, 1989 Epoxy Fracture Surface
Spectral Gilbert, 1988 Sierra Newada Topography
Spectral Brown and Scholz, 1985 Rock Fracture
Spectral Carl 1989 Rock Fracture
Spectral Miller et al., 1990 Rock Fracture
Spectral Mandelbrot et al., 1984 Steel Fracture
Spectral Langford et al., 1989 Photon emission from epoxy fracture
Variogram Burrough, 1989 Soil pH variation
Variogram Burrough, 1989 Soil Na variation
Variogram Burrough, 1989 Soil Elec. Resist. Variation
Variogram Armstrong, 1986 Soil Microtopography
Distribution Curl, 1986 Cave Length, Volume
Distribution Krohn, 1988a Sandstone Pores
Distribution Katz and Thompson, 1985 Sandstone Pores
Dzstribution Krohn, 1988b Carbonate and Shale Pores
D~stribution Avnir et al., 1985 Carbonate particles
Distribution Avnir et al., 1985 Soil Particles

F. D. Increment
.15 to .28
.04 to .38

.0008 to .0191
.50

.0000 to .0315
.058 to .2fil
.351 to .512
.025 to .106

.32

.47

.00
.12 to .16
.37 to .69

.041 to .159
.05 to .60
.2 to .4

.35

.35

.16
.04 to .46
.15 to ~32
.31 to .40

.20
.20 to .30
.33 to .40

.28

.32

.32
(-).835 to .471

.26 to .68
(--).880 to .4fi7

.124 to .383
.26
.45

.6 to .8

.7 to .9

.4 to .6
.64 to .90

.4, .8
.49 to .89
.57 to .87
.27 to .75
.01 to .97
.43 to .99

Table 1: Measur~l f~ctal dimensions by 7 methods.



248 B. L. COX, J.. $. Y WANG

selected references which demonstrate the use of different measurement methods
as well as the application of these methods to different types of problems related to
earth sciences and natural surfaces. There are basically seven techniques for mea-
suring fractal dimension of natural surfaces. Four of these methods apply directly
to a simple geometrical pattern: 1) the divider (or ruler) method, 2) the box
method, 3) the triangle method and 4) the slit-island method. These methods
involve the direct measurement of the length of a contour, boundary or profile,
and/or the measurement of an area. The slit-island method differs from the first
three methods in that it requires the measurement of a population of geometrical
patterns, rather than a single pattern. The other three methods apply to a func-
tional representation of variability. The 5) power spectral method uses integral
transform to measure a boundary or profile. The other two methods are statistical
measurement methods: 6) the variogram method, and 7) the size distribution
method. We include both geometric and functional representation methods,
because we are interested in the fractal dimension of spatial distributions of data
over a two-dimensional plane, not just physical topography.
Table 1 lists some of the articles cited in this report which correspond to each of
the seven methods. The application for which the measurement was made, as well
as the fractal dimension measured, are also shown in this table. The fractal dimen-
sion shown in the table is the fraetal dimensional increment, defined as the differ-
ence between the fractal dimension and the topological or Euclidean dimension.
The fractal dimension of a non-planar surface will be greater than 2 and less than 3.
If this dimension is 2.4, then the fractal dimension of its coastline would be 1.4 and
the fractal dimensional increment Dine is 0.4 (Peitgen and Saupe, 1988). Table 2
summarizes the plotting parameters and formulae for computing D for each of the
seven methods.

Method Log X-axis Log Y-axis Formula for D

Diwder Ruler Length Sum of Ruler Lengths D = 1 - slope
Box l/Box Side Total # of Boxes D = slope
Triangle Grid Spacing Total Area/mimmum area D = 2 - slope
Slit-lsland Perimeter Area D = 2/slope
Spectral l~equency Spectral Density D = (5 - slope)/2
Variogram Distance between Measurements, (h) semi-variance, v(h) D = (4 - slope)/2
Distribution Number above cutoff size area D = 2(slope)

Table 2: Fractal measurements by 7 methods: Formulae.

2.1. Divider Method (Ruler Method)

The divider method is the oldest method of determining the fractal dimension. Its
use as a measurement technique (Richardson, 1961) predates the invention of the
word ’fractal’. The basic method involves measuring the length of a curve either at
different resolutions, or with different sizes of measuring stick (ruler). This curve
could be a topographic profile (Gilbert, 1989), a contour (Norton and Sorenson,
1989), the silhouette of a particle (Akbarieh and Tawashi, 1989), or a signal from
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time series data (Langford et al., 1989). Other names for this technique are the
yardstick method or the structured walk technique (Kaye, 1989).
The essential characteristics of this method are illustrated in Figure 2a. First, walk
the ruler or caliper along the profile and record the length (which equals the num-
ber of ruler lengths times the size of the ruler). Next, change the length of the ruler
and repeat the measurement. Repeat this process several times, each time with a
different ruler length. Then plot the log of the curve length versus the log of the
ruler length, and if the data plot along a straight line, the profile has fractal geome-
try. (This plot is sometimes called a "Richardson plot"). Determine the slope of
the line which best fits the data, and compute the fractal dimension from this slope.
As we noted earlier in section 1.2, the length is proportional to r1-D. The fractal
dimension D equals one minus the slope.

L = ~ di(r)

~ der /’~o’ ,

(b)

(a) Divider Method

L=Zdi

sklp 2 points
o

D = 1 -Slope

-- I 0¢ 1’0’ ’     I 0* 102 I 0°

¯ " sktp 3 points Log Ruler Length

Figure :~: (a) Divider (ruler) method: caliper or divider applied to surface or profile; (b) modified divider
where straight line length between divisions along base are measured; (c) digitized ruler method using

point counting (Clark, 1986); (d) example of plotted measurements where D = 1 - slope.

There are several variations on how one might discretize this measurement. When
one measures the contour or profile, the usual method is to start at some initial
point along the curve, and moving along the curve from the initial point, measure
equal intervals along the curve itself (Fig. 2a). A remainder which doesn’t fill the
last ruler usually exists, and some means of handling this remainder must be
devised. An alternative method for profiles is to project vertical lines at equal
intervals along a baseline up to the profile (Fig. 2b). Then, connect the intersec-
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tions of the vertical lines, and measure the distances between these intersections.
This second approach will not result in a remainder. These two approaches, that of
measuring equal intervals along a curve, and that of measuring equal intervals
along a baseline, may give different fractal dimensions. A third approach, used
with digitized data (Clark, 1986), is shown in Figure 2c~ Here, the interval or ruler
is defined by a specified number of grid points. This number of points consists of
both horizontal and vertical components, so that the length of each step will be
different. An average step length is obtained by dividing the total length by the
number of steps. This process is repeated at different resolutions. The results are
then plotted on a log-log scale, with the average step length on the x-axis and the
total length on the y-axis, and the slope is used to calculate the fractal dimension
(Fig. 2d).

Two image analysis techniques have been used to determine the fractal dimension
(Kaye, 1989). One uses a scan line inspection system to analyze television images
of the boundary. The distance between the scan lines is the resolution parameter.
The pixel coordinates of the intercepts between the image and the scan lines
determine the perimeter of the boundary. This is repeated over a range of scan line
spacings to generate a Richardson plot. Another image technique is based on
adding pixels to the image and making a boundary appear as a ribbon. This is
known as the dilation-erosion procedure. The area of the ribbon is evaluated by
the image analyzer and the perimeter is estimated for a given dilation level from di-
viding the area by the thickness of the ribbon. These two image techniques are
variations of the divider method (Kaye, 1989).

When determining the fractal dimension of surfaces, a series of profiles across the
surface need to be measured. The data for all of the profiles can be plotted on one
graph to determine the fractal dimension. An alternative is to make individual
plots of profiles, and the fractal dimension of the surface will then be related to the
average of the fractal dimensions of the individual profiles. Since the fractal
dimension of a surface should lie between 2 and 3, and that of a contour or profile
between 1 and 2, researchers add 1 to the average fractal dimension obtained from
the profiles.

For natural surfaces, the divider method often gives fractal dimensions near two
(Aviles et aL, 1987; Brown, 1987), which would indicate a smooth planar surface.
Brown states that one explanation for this is that the surface is self-affine, and that
the horizontal resolution is too great to detect the surface irregularity. Crossover
length is the maximum scale at which irregularity is observable, and if the horizon-
tal resolution is greater than the crossover length for self-affine surfaces, the sur-
face will appear fiat. Brown incrementally magnified the profile height (the vertical
scale) repeatedly until a stable fractal dimension (a constant slope) was obtained.
In other words, by increasing the vertical scale, the slope of the log-log plot kept
changing until he reached a vertical scale beyond which the slope didn’t change.
This is based on the assumption that the magnification can equalize the horizontal
and vertical scaling factors and transform a self-affine surface into a self-similar
surface.
Before performing the fractal measurement by the divider method, it would be very
useful to know whether or not the surface was self-affine. Matsushita and Ouchi
(1989) designed a method to analyze self-affinity in topographic data. A fixed ruler
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scale was used to measure the length between many pairs of points on a profile or a
contour. For each pair, the coordinates of all of the measurement points of the
ruler are used to calculate two standard deviations in the two coordinate directions
(x and y for contours, x and z for profiles). The standard deviation (for x and y
or for x and z) versus length for many pairs of points are plotted on a log-log
scale. The slopes of these two lines yields the self-affine exponents, vx and Vv, or
vx and v_ If v_ and v. are the same, then the curve is self-similar, and H = ~x --
Vv, and ~)inc ~the fra~al dimensional increment) -- 1 - H. If they are different,
then the curve is self-affine.

2.2. Box Method

The box method uses boxes to measure the
length of a curve, or the density of lines or
points over an area (Mandclbrot, 1982;
Hirata, 1989; Barton and Larsen, 1985; La
Pointc, 1988; Sreenivasan et al., 1989). The
curve may be either a profile measured
across a surface, or contours resulting from
a horizontal slice taken through the surface.
The curve is covered with square boxes as
shown in Figure 3a. The size of the box is
the length of the square. The number of
same size boxes needed to cover the line is
counted. This is repeated for a series of
different sized boxes. The results are then
plotted as the number of boxes (y-axi.s)
versus 1/(box size) on a log-log plot (Fig.
3). The fractal dimension D is equal to the
slope of the plot. A variation on this
method is to use circles instead of squares
(Okuba and Aki, 1987), where the diameter
of the circle is equivalent to the box size.
There are different ways of applying the box
method. Some of these methods are
presented in Goodchild (1980). The box
method can be easily implemented with a
computer algorithm by defining the boxes
with a square grid. One can then count the
number of intersections of the line with the
boxes (grid elements or tiles), or
alternatively, the number of boxes
intersected by the line. When using a
computer, one can start with the finest
resolution image and then mathematically

Figure 3: Box method: (a) profile is covered with
square boxes; (b) with circles; (c) example of data plot

with D = slope.

r       r = Box Dtrnenslon

d~ameler = Box Dimension

Box Method

o

° D=slope

Log (I/Box Dimension)
(~)
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combine tiles into larger, lower resolution images, a procedure called ’mosaic
amalgamation’ (Kaye, 1989). The box method can be used to analyze areas within
curves as well as the curve itself. One can apply the centroid rule where the
centroid of the box has to lie in the region of interest (not on the other side of the
line) for the box to be counted. One can also apply the ’majority rule’, where a box
is counted ff more than half of its area lies within the region of interest.
Map interpretation requires the estimation of lengths of boundary lines and of
areas defined by the boundaries. Goodchild (1980) showed how these map mea-
surement problems are related to fractal dimension. He generated surfaces of pre-
scribed fractal dimension, then covered the surfaces with boxes, and classified the
boxes as to whether the centroid lay above or below the contour value. The error
of the method could then be estimated and related to the [ractal dimension. By
understanding this relationship, the fractal dimension could then be used to esti-
mate the optimal grid size for use in geographic and geomorphic studies. This
optimization is based on a tradeoff between computational effort and expected
error. The error decreases while the computational effort increases as box size de-

The application of the box method to the measurement of the fractal dimension of
the surface, rather than to a single curve, requires that one measure many contours
and/or profiles of that surface, and then average the results. Again, the usual
practice is to then add 1 to the average value, so that the fractal dimension ranges
between 2 and 3, rather than between 1 and 2.

The box method can be modified for self-afline curves by converting the square
boxes to rectangles which have an aspect ratio representing the ratio of the
anisotropic scaling factor as described in Mandelbrot (1986a) and Turcotte (1992).

2.3. Triangle Method

The triangle method is a way of analyzing a a rough (not flat) surface directly, by
covering the surface with triangular grids (Fig. 4), and using the change in surface
area with the change in grid size as the basis of the fractal analysis. The triangles
making up the grid are isosceles right triangles, so that two triangles make a square.
The elevations of the apices of the triangles are determined by the height of the
surface at the apex locations. The area can is found by a standard vector formula
given three points (a, b, and c) inx-y-z space, where area

A -- 1/2 {AbsI(b - a)(c - a)]}

If all three corners are the same elevation, then the triangular surface area is a
minimum. The surface is covered repeatedly with a series of different sized grids,
and the total area of the triangles is calculated for each grid size. A rough surface
will have the elevations different for the three apices and the areas of the triangles
will be as large or larger than the minimum value. The total surface area of the
rough surface would thus be greater than the total surface area of a fiat surface.
The total surface area is plotted on the y-axis, and the resolution of (i.e. distance
between) the grid points is plotted on the x-axis, on a log-log scale. This is a varia-
tion or direct generalization of the divider method, using triangular increments
(like rulers) to measure the surface area (instead of the length).
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c@
(b)

Triangle Method

D =2-Slope

Log Triangle Side

(c)
Figure 4: Triangle method: (a) plan view of surface covered with triangles of consecutively smaller size;
(b) choice of diagonal may give different surface area, solid diagonal gives ridge while dashed diagonal

gives valley;, (c) example of log-log plot where D = 2 - slope;A is area of rough triangle; A0 is area of flat
triangle; Relative surface area isA/A0, (after Denley, 1990).

In practice, there is some ambiguity in this technique. Pairs of triangles are posi-
tioned over square grid areas (e.g., over a digitized data set). The choice of
diagonal can affect the results. One diagonal will be a topographic ridge, while the
other will be a topographic valley. The surface area covered by the two sets of
triangles with opposite diagonals will not give the same results. Denley (1990)
calculates the surface area for both diagonals and uses the average. The results are
plotted on a log-log plot as the normalized area versus the grid element size where
the surface area is normalized by the frame area (the minimal value possible for
surface if it were flat). If the data plot on a straight line, then the surface is defined
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as a fractal surface. The slope of the plot (which should be negative) is used to
determine D, where D equals 2 minus the slope.

The application of this method to a self-affine surface has been discussed by Man-
delbrot (1986a and 1986b). The use of a rectangular grid, rather t hart a square
grid, may be a way to measure a self-affine surface by the triangle method, but tri-
angular coverings of self-affine fractal surfaces lead to problems such as the
’Schwarz area paradox’, discussed in Mandelbrot (1986b).

2.4. Slit-Island Method

Slit-Island Method

Ca)
Log Perimeter

Cb)

Island

Lake Islandw, ithin
Island within Lake (within Island)

Isla~

(c) (d)

Figure 5: Slit-Island method: (a) take a horizontal cut through the surface creating islands (dark regions);
(b) example of log-log plot where D = 2/slope; (c) Mandelbrot’s "island within lakes"; (d) Huang et a!.’s

"islands within lakes".

The slit-island method was first introduced by Mandelbrot et. al. (1984). In this
technique, the topographical surface is sliced horizontally, creating a surface con-
tour which divides the surface into two kinds of shapes. One can think of the slice
as a water level, where those shapes which emerge above the water are ’islands’, and
those submerged below the water are ’lakes’. There is a range of sizes of these
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regions, and the population of different sized islands becomes the basis of the scal-
ing, simplifying the measurement of fractal dimension. Instead of having to mea-
sure the islands with a variety of rulers, the islands are measured individually, with
both a perimeter and an area value assigned to each island. These parameters are
then plotted on a log-log plot of perimeter versus area, and if they plot on a straight
line, the slope ffi 2/D, or D equals 2 divided by the slope (Fig. 5). This technique,
like the triangle method, is designed to measure a surface, in contrast to some of
the other techniques (e.g., the box and divider methods) which are designed to
measure a curve, and must be adapted to measure surfaces.
One particular problem with this technique is that an island may have within it
’lakes within islands’ as well as ’islands within lakes’. This problem was addressed
by Mandelbrot et aL (1984) who included ’lakes within islands’ in the analysis, but
neglected the ’islands within lakes’ (Fig. 5). The reason for this choice was probably
related to the range of resolution over which the pattern was expected to be fractal.
Huang et aL (1990) used both ’lakes within islands’ and ’islands within lakes’ in
their analysis. However, they were referring to looking at matching sides of the
fracture, so that the ’lakes within islands’ were the complementary shapes on one
side of the fracture, and the ’islands within lakes’ were the shapes on the opposite
face of the fracture (Figure 5). They analyzed all of the area versus perimeters of
one side of the fracture, then did the same analysis using the other side of the frac-
ture, and these measurements were not the same. For the same surface, it would be
interesting to apply the slit-island analyses to the submerged areas instead of to the
islands (Fig. 5). Is the fractal dimension of the submerged areas (’water or lakes’)
the same as the fractal dimension of the islands?

2.5. Power Spectral Method

Power spectral methods are based on power spectral analysis, which can be applied
to time series data, as well as to vertical profiles taken across topographic surfaces
(Berry and Lewis, 1980; Langford et aL, 1989; Brown, 1987; Gilbert, 1989; Turcotte,
1992). The power spectral density function for random data describes the data in
terms of the spectral density of its mean square value for different frequencies
(Bendat and Piersol, 1966). Once the data are plotted as power spectral density
versus frequency on a log-log plot (Fig. 6), the fractal dimension can be determined
from the slope of this plot. This technique is favored by geophysicists, and after the
divider method, is probably the most popular method of measuring fractal dimen-
sion.
This technique requires a considerable amount of pre-processing of the data,
described in Power and Tullis (1991) and Bendat and Piersol (1966). The first step
is to remove trends from the data. The trends are likely overprinted from spectral
components with wavelengths larger than the profile lengths. The linear trend can
be determined by least square fitting of a line to the data along a profile. The sec-
ond step is to taper the profile to handle a remainder problem. This is usually done
using a cosine-squared (Hanning) window, so that the beginning and end of each
profile begins with a zero. Next, a fast Fourier transform (FITF) algorithm is
applied to the data. The FFT algorithm is used to describe the profile data as a
sum of sine and cosine waves. The power spectral density can then be calculated by
squaring the amplitude at each frequency and normalizing with the profile length.
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The ensemble averaged spectrum is calculated by averaging power at each discrete
Fourier wavelength from multiple profiles of equal length. The spectral density
versus the spatial frequency is then plotted on a log-log plot. A straight line is fitted
to the plot, and then the fractal dimension is calculated, where D = (5 - slope)/2.
The computed line can be subtracted from the power spectral line to inspect the
residuals. If the line fit is acceptable, the residuals should be approximately zero
and have no structure (Gilbert, 1989).

Power Spectral Method

10°

D = (5-slope)
2

Log Spatial Frequency
Figure 6: Power spectral method: compute spectral density of profile as a function of frequency and plot

on los-log graph; D = (5 - slope)/2.

The problems with this method are that it requires complicated pre-processing, and
these processing techniques vary considerably among different researchers. There
are different ways to detrend, to taper, and there are numerous FFT algorithms.
Also, the log-log spectral plots are not nearly as linear as are the log-log plots
obtained from other techniques for measuring fractal dimension, so that curve-fit-
ting errors can be greater for the spectral method. In addition, the power-spectral
method, like the divider and box methods, is designed to measure line patterns, and
must be adapted to measure patterns extending over a two-dimensional coordinate
system. The common practice is to measure a series of profiles, find an average
fractal dimension of the set of profiles, and add 1 to this dimension. However, Tur-
cotte (1992) recommends that a two-dimensional discrete Fourier transform be
carried out over the surface.
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2.6. Variogram Method

The variogram method of measuring fractal dimension relies on a geostatistical
analysis of a spatial data set (Burrough, 1983a,b; Armstrong, 1986; Wang et al.,
1988; Klinkenberg and Goodchild, 1992). The variable could be any property which
varies over a plane, including topography, temperature, moisture, and chemical
composition. The spatial data set is thus a surface. The spatial distribution of a
variable z can be characterized by a variogram of semivariance function. For a
profile along an array z(xi), the semi-variance (v) can be estimated as

v(h) = ~    (z(xi) - z(3q -1- h))2
2~

where n is the number of pairs of separated points, separated by distance h (the
lag). When the estimated semi-variance is plotted against h, it can either asymp-
totically approach a constant value (sill) or increase without bound as h increases.
Unbounded variograms suggest that variation is occurring over a continuous range
of scales (Burrough, 1989). Both the transitive variogram with a finite sill and
unbounded variograms can be analyzed in log-log plots (Wang et M., 1988). If the
log of the estimated semi-variance is plotted against the log of h, the slope is 4 -
2/9. So the fractal dimension can be computed as D = 2 - (slope/2) (Fig. 7).
Problems with the variogram method are that the choice of sampling interval h as
well as the determination of the slope of the plot may affect the value of the fractal
dimension.

--i0~

D=2 slope
2

Log Sampling Interval, H

Figure 7: Variogram method: compute semi-variance as a function of sampling interval and plot on log-
log sraph where D = 2 - (slope/2).
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2.7. Distribution Method

Another statistical approach to fractal dimension measurement is to apply fractal
theory to a size distribution or histogram (Avnir et al., 1985; Curl, 1986; Krohn,
1988a,b; Ricu and Sposito, 1991a and 1991b; Turcotte, 1992). The sizes (length,
area, ~iolume, or any physical or chemical measurement) of a certain phenomenon
(mineral grains, caves, etc.) are divided into size classes. The number of objects
which are greater than each size category are then plotted on a log-log graph, with
the number on they-axis, and the size class on thex-axis (Fig. 8). Many size distri-
butions in nature follow Korcak’s empirical law (Mandelbrot, 1982) where the
probability of an area A exceeding some minimum area a is given by

Pr(A > a) = ka-B.

Mandelbrot (1982) explains that this size distribution is a consequence of fractal
fragmentations. If the x-axis parameter is area, and the data fall along a straight
line, then the slope of the line equals - D/2 and D = - 2 (slope). Other types of
distributions lead to different equations. For example, if a size distribution of par-
ticles falls along a line on a log-log graph, (with number of particles exceeding a
size class on they-axis, and diameter on the x-axis), then D = -slope (Rieu and
Sposito, 1991b). A similar problem to that of the variogram method is that the
choice of size class interval may affect the value of the fractal dimension.

--10°       10’

[3

D=-2(slope)

Log Particle Size

Figure $: Distribution method: determine the size distribution and plot the log of the size class versus the
log of the number of counted objects which are greater than the size class; D = --2 slope, if the size is an

area.
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3. APPLICATIONS IN THE EARTH SCIENCES

Researchers in the earth sciences have applied fractal measurement to numerous
types of phenomena over length scales ranging over 15 orders of magnitude, from
megameters to nanometers. We have selected examples from the following cate-
gories: map data (elevation contours, channels and caves, and fault traces); frac-
ture surfaces (natural rocks and metals); pore geometry (aggregate, particle size
distributions); and microscopic surface phenomena (adsorption, dissolution). Map
data are used by geographers, geologists, geomorphologists, and geophysicists.
Fracture surfaces are studied in the fields of geology, geophysics (rock mechanics),
and material science (fractography). Pore geometry is of interest to hydrologists,
soil physicists, and petroleum engineers. Surface phenomena are important in the
fields of geochemistry, mineralogy, and soil chemistry.

3.1. Map Data (Landscape Scale)

3.1.1. Elevation Contours

Topographic data from the earth are either from land emergent above sea level
(mostly continental land masses) or from land submerged below sea level (mostly
oceanic floor). Topography of continental land masses is much more heteroge-
neous than oceanic floor topography, and can be measured by many different tech-
niques. Most ocean floor topography, however, is accessible only by remote geo-
physical measurement. Following are examples of fractal applications from both
types of earth terrain. In addition to earth topography, elevation contours from the
surfaces of the other terrestrial planets (Mercury, Venus, and Mars) can be used for
studying cratering histories (age relationships) and planetary response to cratering
(mechanical response to impact). The fractal theory has been applied to these
extra-terrestrial types of terrain, but we have not included these examples in this
review.
Norton and Sorenson (1989) applied the divider method to topographic map con-
tours of a granitic batholith (a large igneous rock mass intruding older rocks), in
the Sawtooth Range in Idaho. They were interested in examining if the fractal
dimension could reveal anything about the underlying fracture networks. Fracture
patterns of granitic masses reflect the cooling history of the intrusion. Following
tectonic uplift of the granites, the exposed fracture patterns are enhanced by sur-
face weathering. Norton and Sorenson digitized contours and vertical sections from
maps at scales of 1:250,000 and 1:24,000 and found fractal dimensions ranging from
1.15 to 1.28 within a pluton (small intrusive igneous rock mass). They used a
tolerance method to handle the remainder, including only those rulers giving a
remainder less than a specified value (tolerance). The data on log-log plots were
not linear, but curved concave downwards. They divided the slopes into 3 seg-
ments, and used the middle slope to determine the fractal dimension. The fractal
dimension correlated most directly with elevation, but also with rock type, fracture
abundance and glacial smoothing. Norton and Sorenson concluded that the fractal
dimension may have potential use in the analysis of strain and in the correlation of
permeability values with fracture networks.
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Gilbert (1989) applied the spectral technique to digital elevation data (30 m spac-
ing) from the Sierra Nevada Batholith. The fractal dimension varied between 0.835
and 1.471, depending on the sampling scheme. The lowest fractal dimension was
for the entire unprocessed data set. Notice that this dimension is lower than the
topologic dimension, so does not fit fractal interpretation; the fractal dimension
should be greater than 1 for a line. The spectral density-frequency log-log plots are
generally curved with few straight segments. These few straight segments yielded
slopes which were a function of bandwidth. Gilbert cautions that if fractal geome-
try is used to quantify topography, the scale must be specified in the form of the
bandwidth being considered, and the data analysis techniques must be clearly
stated.
Gilbert (1989) also used the spectral method to determine the fractal dimension of
South Atlantic ocean floor topography (425 m spacing). After considerable pre-
processing of the raw data, the spectral analysis was applied, and three different
processing techniques were compared. The log-log plot of the power spectra versus
wavelength was curved, and strongly dependent on the method of pre-processing.
The fractal dimension ranged from 0.919 to 1.325. Notice that the lowest fractal
dimension is again less than the topologic dimension, so is inconsistent with a frac-
tal interpretation of the spectra. This indicated that either the profile was not frac-
tal over the band widths considered, or that the data had not been sufficiently pro-
cessed (Gilbert, 1989).
Matsushita and Ouchi (1989) used a variation of the divider method (see sec. 2.1)
to analyze the self-affinity of the topographic data from Mt. Yamigo, Japan. They
found that contour lines of topography were self-similar, with a fractal dimension
of 1.37. A transect vertical profile was shown to be self-affine with the standard
deviations of horizontal and vertical coordinates having different dependence on
the curve length. For a transect profile near Mr. Shirouma in the Japanese Alps,
the local self-affine fractal dimension for ruler lengths less than 2 km was the same
as that for contour lines. The slope of the plot changed at ruler lengths greater
than 2 km, giving a larger fractal dimension for global altitude variations.

3.1.2. Channels (caves and streams)

Caves are sub-surface channels created by underground fluid flow. In the case of
limestone caves, the fluid is groundwater, while in the case of lava tube caves, the
fluid consists of gas and liquids associated with flowing and cooling lava. The caves
are geometrically characterized by the lines, areas, and volumes.
Curl (1986) looked at the statistical distributions of cave lengths for ten different
geographic locations. The distributions of the number of caves belonging to differ-
ent size ranges are approximately hyperbolic. By assuming that caves follow a natu-
ral fractal distribution, with self-similar property, Curl is able to tackle two prob-
lems in cave length measurement: 1) the problem that caves are three-dimensional
(volumes) but are measured as lengths and 2) the problem that the measurement
length is limited by the size of the person doing the measurement. A person cannot
measure a cave if the cave dimension is too small for the person to enter it.
Curl uses a "linked modular element" model where the modulus is a sphere with a
diameter of the average explorer. Spheres fill the cave, touching the walls at a
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minimum of two points. The length of the cave will then be the sum of the sizes of
modular elements in that cave, the area will be the total area of modular elements,
and the volume will be the total volume of elements. Cave lengths show a fractal
dimension of about 1.4, while the fractal dimension of the volume of the Little
Brush Creek Cave, Utah, is about 2.8, the same as that of a well-known determinis-
tic fractal called a Menger Sponge.

Streams are surface channels which are much more dynamic than caves, changing
course rapidly in response to the changing energy of the stream, which in turn is
responding to seasonal changes. Snow (1989) applied fractal analysis to stream
channels and related the fractal dimension to sinuosity. Sinuosity is the ratio of
real channel length to some general river course length. However, there is no uni-
versally applicable objective method of defining river course length. Snow pro-
poses that fractal theory allows one to more precisely define sinuosity. He exam-
ined 12 stream channel planforms (map traces of mid-channel stream path) from
plateau and lowland regions of Indiana and Kentucky and applied the divider
method to them. The mid-channel traces on topographic maps (1:24,000 scale)
were digitized. The log-log plots of trace lengths versus divider lengths from 12
stream channel planforms were compared with each other and with those from ide-
alized meander planforms. Fractal dimensions varied from 1.04 to 1.38. Sinuosity
and fractal dimension were related but not directly comparable. Snow found that
fractal dimension seemed to be a better way of describing stream wandering than
sinuosity.

3.1.3. Fault Traces and Fault Networks

Fault traces are the surface manifestation of the fault planes. These are mapped by
geologists and geophysicists, often requiring the synthesis of both air-photo inter-
pretation of topography, and field observations. Large strike-slip fault traces such
as the San Andreas Fault have been measured over many different scales. Aviles et
aL (1987) applied the divider method to various segments of the San Andreas
Fault, focusing on six segments which have some characteristic behavior, such as
seismicity patterns, geologic complexity, or historic events. Fault traces were iden-
tified on maps, a single predominant strand was selected, and strand ends were
joined. This approach involves considerable interpretive processing in the initial
selection of the traces. After digitizing the fault traces at every 100 m spacing, data
were converted to arc distance, and gaps in data were avoided by joining ends. The
traces were very smooth, with fractal dimensions ranging from 1.0008 to 1.0191.
However, if one considers the errors involved in selection and measurement, these
dimensions are indistinguishable. The short wavelength band showed a larger frac-
tal dimension than the long-wavelength band, and fractal dimensions tended to
increase towards the southeast. Fault segments associated with different processes
(such as creep, seismic slip, or microearthquake activity) were indistinguishable on
the basis of fractal dimension.

In an earlier study of the same data using the spectral method, Scholz and Aviles
(1986) found larger fractal dimensions, ranging from 1.1 to 1.5. Okuba and Aki
(1987) used the box method on the San Andreas traces, trying to relate strain re-
lease to the geometry of the fault traces. They used circles of different radii to
cover the faults in such a way as to minimize the number of circles needed to cover
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a given fault trace. Fractal dimensions fell in the range between 1.12 and 1.43. The
fractal dimensions with the box method also increased to the southeast. The fractal
dimensions by the box method were somewhat intermediate between those esti-
mated by Aviles et al. (1987) with the divider method and those estimated by
Scholz and Aviles (1986) with the spectral method.

In addition to studies of a single fault trace such as the San Andreas fault, the frac-
tal analyses have been applied to a network of fault traces. Hirata (1989) applied
the box method to fault systems in Japan, to determine whether or not the struc-
ture of the fault system was self-similar. Only those faults which had been active
over the past 2 m.y. were analyzed, using geological interpretation of aerial pho-
tographs, supplemented by geologic maps and reports. The fractal dimension of
fault systems in Japan ranged from 1.05 to 1.60, with high values of 1.5 to 1.6 at the
central part of the Japan Arc, and becoming lower outward from the center. There
is significant branching in the central part of the arc, and the branching diminishes
away from the center. Hirata discussed the relationship between fractal dimension
and the energy required to fracture the rock. The fractal dimension varied with
scale, depending on what underlying structure was controlling the fault.

Barton and Larsen (1985) and La Pointe (1988) have measured fractal dimension
of fractured networks in rock pavements with areas ranging from 200 to 300 mz, in
an attempt to characterize fracture density and connectivity. Both studies used the
box method, placing a size range of grids over the fracture network of three
laterally separated rock pavements from a Miocene ash-flow tuff at Yucca
Mountain, Nevada. Barton and Larsen counted the fracture intersections for frac-
tures with lengths between 0.20 m and 25 m and found that they fit a log-normal
size distribution. The number of grid elements intersected were plotted versus the
grid element size on a log-log graph, and the data fit straight lines over the scale
range of 0.20 to 25 m, with fractal dimensions between 1.12 and 1.16. La Pointe also
placed grids over rock pavements, but used two different formulations to calculate
the fractal dimension. In one of these, the number of fractures per unit area of
rock is counted for each different grid spacing. In the second formulation, the
number of blocks bounded by fractures in each grid cell is counted. La Pointe ar-
gues that a block density formulation may correlate better with permeability,
because blocks are formed by interconnected fractures rather than by isolated frac-
tures. La Pointe analyzed the fractal dimension of the same Yucca Mountain rock
pavements measured previously by Barton and Larsen, using the block formulation
and obtained fractal dimensions ranging from 2.37 to 2.69.

3.2. Fracture Surfaces

Fracture surfaces are formed when a solid is stressed beyond its failure threshold
and breaks. This involves the disruption of mineral grains, rock fragments, matrix
filling, and the breakage of chemical bonds. Natural fractures are then subjected to
numerous processes such as movement along the fracture, filling of the fracture by
material brought in by fluid flow, and precipitation of minerals in place. Many
episodes of these processes complicate the interpretation of fracture surface topog-
raphy. Laboratory studies, on the other hand, can be controlled so that the fresh
surface of rock or metal can be created and measured. Fractal analyses have been
applied to both types of fracture studies.



FRA CTAL SURFACES:                                26~

3.2.1. Rock Fractures in the Field and in Hand Specimens

Brown and Scholz (1985) and Power and Tullis (1991) used surface profilers to
measure parallel sets of profiles across both laboratory and field-scale rock sur-
faces. They included different kinds of rock (siltstone and gabbro) and different
kinds of surfaces (bedding plane, fractures, glacial scarred surfaces). The spectral
method was used to determine fractal dimension of these surfaces. All surfaces
showed power spectra which decreased rapidly with spatial frequency. Slopes were
determined by least squares fitting of a straight line. Slopes were not constant, and
often two breaks in slope were evident, one corresponding to the transition from
grain size to larger scale processes, and the other near the outcrop scale (10’s of
cm). Two of the surfaces were anisotropic, and different fractal dimensions were
determined for profiles taken perpendicular to each other. Fractal dimension was
constant only over limited ranges of spatial frequency. Despite these limitations,
Brown and Scholz (1985) concluded that the fractal description of fracture surfaces
offers an advance over previous topographic measurements because other rough-
hess measures are not constant over any range of scales. The fractal model allows
one to tie the topography to natural processes (such as faulting) as well as to
numerically develop realistic topographic surfaces (Brown and Scholz, 1985).
Carr (1989) compared the divider and spectral methods for measuring fractal
dimension of fracture surfaces in welded tuff from near Yucca Mountain, Nevada.
He used two different methods of measuring the surfaces, a stringline method and a
photographic technique. The stringline method requires that a string be stretched
parallel to a fracture; an elevation is then measured using the string as a base. The
photographic technique involves placing a straightedge on exposed rock surfaces to
cast a shadow of the surface topography of the rock. This shadow is photographed
and a digitized profile is obtained by measuring distance from the straightedge to
the top of the shadow. A finer resolution of the rock surface topography was
obtained by using the photographic method than by using the stringline method.
The profiles obtained from these two measurement techniques were then analyzed
by the divider method and the spectral method. The divider method gives a fractal
dimension close to 1 while the spectral method yields substantially larger fractal
dimensions (Table 3).

Silt- PowerApplication Divider Box Reference
Island Spectral

San Andre~ Fault Traces .008- 019 .120-.430 -- .I00-.500 AVILE87,SCHOL85,OKUBO87

Rock Fracture .410-.500 -- -- .510 BB.OWN87

Joints in Welded Tuff .000-.020 -- -- .500 CARP,,90

Steel Fracture (vert. section) .I05- 155 .330-.395 -- -- HUANG90

Steel Fracture (see. electron) .180-.310 .330-.395 -- -- HUANGg0

Epoxy Fracture -- .350 .320 .450 LANGF89

Steel Fracture -- -- .280 .260 MANDE84

Rock Fracture 058- 261 .041- 150 -- .124- 383 MILLEgO

T~tanium Fracture 099- 126 -- .320 -- PANDE87

Table 3: Comparison of fractal measurements,
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Miller et al. (1990) measured 60 vertical profiles from rock fracture surfaces of
three lithologies (basalt, gneiss and quartzite) and compared four different meth-
ods of measuring fractal dimension (the divider, a modified divider, spectral, and
box). They found the fractal analysis to be ambiguous and inconsistent, both within
a particular method, and between methods. The results of the divider method were
found to vary most among the four methods. They tried to find ways to improve
the reproducibility of each of the four methods. For the divider method, the results
were improved if they divided the remainder by the ruler length, and added this fac-
tor to the total length. The modified divider method involves taking equal steps
along the baseline, instead of along the profile. The fractal dimension measured by
the modified divider method was generally lower than the fractal dimension
obtained by the divider method. Only those rulers which finished within .005 times
the length of the baseline were used. For the box method, they obtained best
results when the box size allowed 20 to 120 boxes to cover a profile of 1000 digi-
tized points. For the spectral method, the results were most consistent when a 2%
to 5% cosine tapering window was used. These guidelines were used in computing
and comparing fractal dimensions from the 60 profiles.

They also discussed whether or not the measurement of fractal dimension is consis-
tent with other measurements of roughness. Visual estimates agreed with other
methods of quantifying roughness; that is, if one rock fracture looked rougher than
another rock fracture, the roughness measurements agreed with the visual assess-
ment. However, the fractal dimension calculated by any of the four methods did
not correlate well with the roughness measures, and was often negatively corre-
lated. Therefore, fractal dimension is not necessarily a measure of roughness’since
it doesn’t correlate consistently with other roughness measurements. This conclu-
sion does not exactly contradict that of Brown and Scholz (1985), whose statement
was that fractal dimension is a better measure of topography than roughness
because of its scale independence. They did not compare or discuss the correlation
between roughness and fractal measurement.

3.2.2 Fractures in the Laboratory

Fractures are of interest both for the study of material properties of the solid, and
for flow properties of a fluid travelling through the fracture opening or aperture.
Fractures in the laboratory have been measured by several techniques. Profilome-
try was described above for field specimens (Brown and Scholz, 1985; Power and
Tullis, 1991). Another technique of measuring fracture aperture is to inject the
fracture with a translucent silicone polymer, and to measure the fracture aperture
by the attenuation of light passing through the silicone cast of the aperture
(Gentier et al., 1989; Cox et al., 1990, 1991). Both profilometry and the silicone
cast methods measure the distribution of the thickness of the openings along the
plane of the fracture. These spatial distributions of aperture thickness could be
used for characterizing flow geometry as well as for determining stress history. The
geometry of natural rock fractures has also been studied in the laboratory by
injecting molten metal into the fractures in order to determine the geometry and
spatial distribution of the contact area of the fracture plane (Pyrak-Nolte et al.,
1987; Nolte et aL, 1989). Contact area patterns in granitic fractures were measured
under different applied pressures by analyzing the filling patterns surrounding the
molten metal. The perimeters of the contact areas were analyzed with the divider
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method, and the fractal dimensions were found to vary from 2.00 to 1.96 as stress
on the fracture increased from 6 MPa to 85 Mpa. The distribution of the contact
area patterns suggests that critical neck diameters may control the flow, and that
the measurement of fractal dimension may help determine flow parameters.
Unlike natural fractures which have been formed by complicated processes in very
inhomogeneous materials, the study of fractures in metals and other homogeneous
materials offers a way of probing fracturing processes and material properties. The
use of fractal analysis to analyze fractures under controlled laboratory conditions is
a very active field of research in materials science, and several examples are pre-
sented here.
Mandelbrot et al. (1984) developed the slit-island analysis and presented this tech-
nique as a new way of estimating the fractal dimension of fractured metal (steel).
The fractal dimension obtained from slit-island analysis was 1.28 while the fractal
dimension obtained from the spectral analysis was 1.26. The spectral analysis was
based on the average of five vertical profiles. The log-log slopes of the spectral
analyses were not smooth, and tended to split into two subregions of different
slope. They suggested that these crossover points related to some underlying
microstructure. The fractal dimension was shown to depend on the temperature
for heat-treated samples, and on the impact energy needed to fracture the metal
samples. The fractal dimension increased with temperature and decreased with
impact energy.
Underwood and Banerji (1986) generated fractal data from vertical profiles
through fractured steel, using the divider method in an automated digitizing pro-
gram. They found no self-similarity, and the apparent curve length didn’t increase
without limit as the ruler decreased. Instead of measured length itself, the ratio of
the measured length over the projected length was plotted on log-log scale versus
ruler length. The plot is not a straight line. However, they used the middle section
of the curve to determine a fractal dimension which varied with tempering temper-
ature.
Huang et al. (1990) also studied heat-treated impact fractured steel, using slit-
island analyses as well as divider methods applied to vertical profiles. The fractal
dimension determined from vertical profiles was very different from that deter-
mined from horizontal slices. For both of these methods, the fractal dimension
increased with temperature. They found that the results of the slit-island analyses
were different for "lakes within islands" versus "islands within lakes," where "lakes
within islands" referred to features on one side of a fracture, and "islands within
lakes" referred to features on the other side of the fracture. Fractal dimension of
"lakes" decreased with increasing impact toughness but the fractal dimension of
"islands" increased with increasing impact. This was attributed to the plasticity of
the fracturing. They expected that these two fractal dimensions would be the same
if the fracturing process was brittle rather than plastic.
Pande et aL (1987) measured fractal dimension of fractured titanium, using slit-
island, divider methods, and secondary electron line-scanning. The secondary elec-
trons are emitted during scanning electron microscopy (SEM) of the surface. The
profile of the intensity of the image is then analyzed using the divider method. The
slit-island analysis gave a fractal dimension of 1.320. The divider method was



applied to two vertical profiles which were polished and observed under the SEM
at different magnifications. Fractal dimensions by the divider method ranged from
1.087 to 1.126. The fractal dimension obtained from the secondary scanning elec-
tron beams was 1.171.

Langford et. al. (1989) measured fractal dimensions of epoxy fractures. They mea-
sured the fractal dimensions of the photons emitted during fracturing as well as the
resulting fractured surface. The amplitude and fluctuations of the photons were
analyzed both by the spectral method and the box method. The application of the
spectral method to the photon emission profile gave a fractal dimension of 1.45
while the box method gave a fractal dimension of 1.35. The epoxy fracture surface
was then analyzed using the slit-island analysis, giving a fractal dimension of 1.32.
The correlation between the fracturing process and the fracture surface was
attributed to crack branching and void growth. They tried to apply the same analy-
sis to MgO crystals but the relief was too small for slit island analysis, and the spec-
tral analysis did not yield a single slope. Box analysis of photon emission of MgO
gave a fractal dimension of 1.16.

Denley (1990) measured fractal dimensions of steel and epoxy fractures, from scan-
ning tunnelling microscopy with resolution near 1 angstrom. He used the triangle
method to determine surface area of the fractures. Neither material yielded a
straight line on a log-log plot of area versus length scale. The log-log plot for steel
was convex upwards, while that for epoxy was convex downwards. He estimated a
fractal dimension of 2.07 for the steel surface.

Mechoisky and Mackin (1988) measured the fractal dimension of a fractured flint
(SiO2) called the Ocala Chert, used by prehistoric Americans for tool-making.
They measured the fractal dimension of fractured flint subjected to different heat
treatment. The fractured samples were nickel plated and then encapsulated in
epoxy and polished parallel to the fracture plane. Slit-island analysis and divider
method were applied to the contours of the islands which emerged with polishing.
The untreated flint had a higher fractal dimension (1.32) than the heat-treated flint
(1.15 to 1.26), and this was attributed to a change in the microstructure with
heating. The strength of the flint directly correlated with fractal dimension, and
heat treatment decreased both strength and fractal dimension. Microscopic
examination of the untreated and heat-treated flint showed a direct correlation
between rough appearance and high fractal dimension.

3.3. Porous Aggregates

Porous aggregates in the earth sciences include volcanic ejecta, sedimentary rocks
and unconsolidated sediments, soils, and landfill materials. The texture of porous
aggregates is important both for fluid retention and fluid flow through soils and
aquifers, particularly in the vadose zone (unsaturated zone above the water table),
where air and water compete for available pore space. The existence of micropores
on mineral or soil particles creates a micro-roughness along pore channels which
may have analogous effects to rough fractures. The spatial variability of soils in the
field has also been analyzed with fractal methods.
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3.3.1. Pore Geometry

Pore geometry has been imaged and analyzed with fractal theory by Katz and
Thompson (1985), Krohn and Thompson (1986), and many others, (see review by
Thompson, 1991). Krohn (1988a,b) analyzed the fractal geometry of the pore
structure of sedimentary rocks using two techniques. One technique was to use
thin sections of the rocks, applying the distribution method to the pore sizes. The
other method was to use scanning electron micrographs of the rough rock surfaces,
applying an automatic feature counter to determine the statistical distribution of
pore sizes at different magnification. Both techniques yielded similar fractal di-
mensions. Some of the pore distributions were fractal while others were Euclidean.
The pore distribution of novaculite, a very finely crystalline metamorphosed
siliceous rock of sedimentary origin, had Euclidean pores. The author suggested
that the classification of the pore geometry by fractal dimension could be used to
measure the extent of pore alteration by pore filling and cements.

Avnir et al. (1985) analyzed and interpreted, in the framework of fractal theory,
previously published data of particle size distributions of aggregates of different
origin (carbonates, quartz particles, rock particles, and soil particles). They found
distinct fractal dimensions for carbonate rocks of different origin. Etched quartz
particles had lower fractal dimensions than unetched quartz particles. The soil par-
ticles were shown to have fractal characteristics but the data had interesting and
abrupt changes of slope at particle size cutoffs which corresponded to different
compositions (such as clays and quartz grains). They also compared shocked and
non-shocked rock particles from the Nevada Test Site. The shocked rock had
higher fractal dimension (and larger surface area) than the non-shocked rock.
Knowing the fractal dimension, the smallest particle diameter could be estimated
from the measured surface areas.

3.3.2. Flow and Transport

Schlueter et aL (1991) applied slit-island analysis to pore geometry on scanning
electron micrographs from several sandstone cores, plotting the perimeter versus
area of pores on a log-log plot. They also looked at SEM images of a single pore in
Berea sandstone at different scales of resolution. The perimeter/area ratios of
these pore images were then measured and plotted on a log-log plot against scale,
and a fractal dimension was calculated. The fractal dimension measured by these
two methods, the slit-island and the box method, were compared and were very
similar (1.31 versus 1.33, respectively). They next developed a relationship between
permeability and fractal dimension, and then used the fractal dimension measured
by the slit-island method to predict the permeability of the sandstone. The perme-
ability predicted using the measured fractal dimension was of the same order of
magnitude as the permeability measured by experiments.
Empirical relations between water content and hydraulic parameters have been
explained using fractal geometry and thin-film physics. Toledo et al. (1990) exam-
ined the empirical power law relationship between the hydraulic conductivity
(conductivity of the fluid through the pores) and water content, and between matric
potential (attraction between water and pores) and water content, where the expo-
nent of water content depends on the fractal dimension of the pore geometry. This
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relationship could be explained by considering the combination of pressures
exerted by thin water films on smooth walls and pendular water occupying smaller
irregular pores. Thus, the fractal dimension of the pore-grain interface estimates
this thin-film pressure. They applied the empirical relationship to soils for which
the hydraulic parameters (conductivity and matric potential) had been carefully
measured, and determined the fractal dimension of the pore-grain interface. If the
empirical relationships are valid and the fractal dimension can be accurately mea-
sured from the pore geometry, then the hydraulic parameters might be estimated
from the pore geometry.

Tyler and Wheatcraft (1989) and Rieu and Sposito (1991a,b) use another approach
to relate fractal dimension of pore geometry to hydraulic parameters. Tyler and
Wheatcraft (1989) estimated the fractal dimension from particle size distributions
of soils and then correlated the fractal dimension with a fitting parameter for a soil
water retention model. Using the fractal dimension from the particle size distribu-
tions of ten soils, they found that the estimated water retention data closely
matched the observed data for all but the three coarsest soils. Rieu and Sposito
(1991a,b) derived seven predictive equations which used the fractal dimension to
relate soil porosity to soil water properties. These equations were based on a frag-
mented fractal porous medium model, and assumed that pore size and particle size
were self-similar, and that the fractal dimension could be determined by the parti-
cle size distribution. They tested the equations with available physical soil aggre-
gate data and found good agreement between the predictions and the experimen-
tally determined soil water properties.
Electrical conductivity can be used as a geophysical technique to study porosity,
permeability, and fluid saturation. Ruffet et al. (1991) measured the electrical
responses as a function of frequency for numerous rock samples of varied lithology
(sandstones, slate, shale and granites). They used two fractal models to derive the
fractal dimension of the samples. One of these models describes a linear transfer
process through a fractal interface, and was derived for one-dimensional and modi-
fied for two-dimensional fractal media. The other model considerspore surfaces as
self-affine fractals, where the rock behaves like a system with resistance in parallel,
with particles diffusing along he interface. By plotting the fractal dimension versus
the specific surface area for the two models, they determined that the modified 1-
dimensional model based on a transfer process was more appropriate, because the
fractal dimension increased with surface area, while the other model showed an
inverse relationship between fractal dimension and surface area.

3.3.3. Spatial Variability

Mechanical properties of soils, such as compaction and soil strength, are important
for the behavior of surface water, for the growth of plants, and for the stability of
structures such as buildings and roads. Armstrong (1986) looked at soil surface
strength measured with field cone penetrometers and shear vanes, as well as micro-
topography measured with a profile meter. He used the variogram method, with
measurements made between distances of 1 to 1000 meters, over a permanent
grassland and a ploughed field in England. The variograms for strength from the
grassland soil had very well-defined fractal dimensions between 1.90 and 1.95, while
those from the farmed soil were more variable, with values between 1.76 and 1.97.
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The topographic data for the profiles have fractal dimensions which varied with the
number of points used to estimate the slope, and depend on whether or not trend is
removed. Armstrong states that many of the practical problems are associated with
a lack of a firm theoretical basis for the derivation of the fractal dimension from the
variogram.
Burrough (1983 a,b) applied the variogram technique to many different published
and unpublished data sets from soil properties measured in the field. These prop-
erties included pH, sodium content, stone content, thickness of soil horizons, elec-
trical resistivity, chroma, bulk density, groundwater level, and particle size fraction.
He found that soil properties (obtained from soil auger samples) such as percent
clay, percent silt, or pH, were fractal but not self-similar. He found that soils data
usually have a higher proportion of short-range variation than landform or
groundwater surfaces, which is reflected in high D values (greater than 1.5). He
proposed the use of a nested model of one-dimensional soil variation, where iden-
tified soil processes occurring over identifiable scales can be used deterministically,
to make prediction or interpolation. However, the nested model was not appropri-
ate when the variation occurred at many closely related scales, with the superposi-
tion of these processes. That is, the nested model worked best where lateral mixing
was negligible and soil boundaries were sharp.

3.4. Microscopic Surface Phenomena

The application of fractal analysis to microscopic surface phenomena is a very
active area of research, and includes such phenomena as surface adsorption, aggre-
gation of particles, and mineral dissolution. The fractal theory has been applied to
static geometry, such as surfaces of minerals (clay), and to dynamic processes, such
as the growth of particle aggregations and the erosion of minerals.
The fractal dimension of microscopic solid surfaces may be of two different types,
surface fractal dimension or mass fractal dimension (Pfeifer and Obert, 1989; Fig-
ure 9). Microscopic phenomena are often studied using scattering methods (such
as small-angle x-ray, neutron, and visible light scattering) where a fraction of the
source beam is scattered when it strikes the sample at different scattering angle.
The structure of the sample affects both the intensity of the scattered beam and the
scattering angle. Depending on wavelength and scattering angle, these techniques
can be used to determine the fractal structures either of the surfaces, with dimen-
sions between 2 and 3, or of the mass distribution, with dimensions between 1 and 3
(Schmidt, 1989; Martin and Hurd, 1987).
Surfaces usually exhibit fractal characteristics on length scales appreciably smaller
than the diameters of the mass fractal aggregates. For a mass fractal of aggregates,
it is usually assumed that individual aggregate units are identical, rigid (hard), and
spherical scatterers. The scattered intensity depends on the structure factor which
is calculated by averaging the pair-correlation function over all orientations and
over all scatterers in the aggregate. For a surface fractal, the entire sample can be
considered to be a single scatterer. The scattered intensity depends on the shape or
form factor of the scatterer. In log-log plots of scattering intensity I versus
momentum transfer q, one can determine whether a sample is a mass or a surface
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fractal by the magnitude of the slope, where I
and I = q6-D~ for surface fractais, 3 < 6 - Ds <_ 4.

for mass fractais, D _< 3 ;

Figure 9: (a) Surface and (b) mass fractal measurement.

Figure 9 illustrates the difference between mass and surface fractals (Pfeifer and
Obert, 1989). Surface fractal dimension is concerned only with a boundary, either a
profile or a contour. The surface fractal defines an area relative to the boundary,
and the area is proportional to the measuring radius raised to the power of the
surface fractal dimension. Mass fractals depend on the entire solid, and not just the
boundary. The system of a mass fractal is described with a lattice representation;
the sites are then either mass sites (occupied sites), surface sites (occupied sites
adjacent to unoccupied sites), or pore sites (empty sites). The number of sites
occupied by each of the 3 types of sites is counted within a radius R of the site, and
the mass is then proportional to the radius raised power of the mass fractal dimen-
sion. For a mass fractal the mass sites and the surface sites have the same fractal
scaling.

3.4.1. Surface Adsorption

Chemically active surfaces are traditionally regarded as two-dimensional fiat arrays
of atoms or molecules. If the actual surfaces diverge from the flat planar idealiza-
tion, then estimates of surface area will not be realistic. This problem can be
approached with fractal analysis (Pfeifer and Avnir, 1983). The fractal dimension of
very small particles can be determined indirectly by measuring the surface area of
particles of known diameter and plotting the log of the surface area versus the log
of the diameter. This approach was taken by Avnir et al. (1985) who used particles
of known radii to study the change of apparent monolayer values with the change
in the average radius of spheroidal particles. Powdered samples of various minerals
(carbonates, quartz, oxides, etc.) were sieved into several fractions, and for each
fraction, the apparent monolayer value was determined by adsorption of some
probe molecule such as nitrogen. If the slope of particle size versus radius (or area
versus radius) is linear on a log-log plot, then the fractal dimension is obtained
from the slope.
Pfeifer et aL (1989) compared two theories (Brunauer-Emmett-Teller or BET and
the Frenkel-Haisey-Hill or FI-IH theories) for multilayer adsorption of gases onto
fractal surfaces. At high coverage of the surface by the adsorbate, surface-adsorbate
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interactions were very different depending on whether the solid substratum was a
mass or surface fractal. Fractal BET and FHH isotherms applied to mass and sur-
face fractals, respectively. The BET model with short-range surface-absorbate
potential is applicable for mass and surface fractais at low coverage while the FI-IH
model with long range potential is for multi-layer adsorption.

Thermodynamic equations for physical adsorption of gases and vapors on fractal
surfaces of heterogeneous microporous solids were derived by Jaroniec et al.
(1990). They analyzed various thermodynamic quantities (the differential molar
enthalpy, the immersion enthalpy, the differential molar entropy, and the average
adsorption potential). All of these quantities increased as the fractal dimension
increased. They interpreted this relationship as the gradual filling of micropores.
The proportion of narrow micropores increases with increasing fractal dimension
of the surface.

3. 4. 2. Particle Aggregation

Particle aggregation is the nonequilibrium process that governs how particles
aggregate to form larger and more complex structures. Examples of particle aggre-
gation include the growth of gold or silver crystals from colloidal suspensions, the
growth of bacterial colonies, the aggregation of atmospheric smoke, and the aggre-
gation of stellar material into nebulae. Growth by particle aggregation can provide
a model for diverse phenomena including physical aggregation, chemical aggrega-
tion, and biological growth. The Witten-Sander type of fractal clusters are simu-
lated or grown by diffusion-limited aggregation (DLA). We mention this topic
because it is an active area of very intense research using fractal simulations to
explain aggregation and growth processes. It is, however, outside the focus of this
review on fractal surfaces. Many excellent reviews of this topic have been published,
including Sander (1985), Jullien and Botet (1987), Avnir (1989), Vicsek (1989) and
Meakin (1991).

3. 4.3. Erosion and Chemical Dissolution

Mineral dissolution is important for the study of weathering processes, and is of
interest to geologists and soils scientists. One example from the medical literature
illustrates the applications of fractals to the study of organic mineral erosion. In
this application Akbarieh and Tawashi (1989) studied the dissolution of Ca-oxalate
dihydrate crystals in urine at different pH and solution concentrations, and applied
fractal analysis to the surface contours of the crystals. They found that the fractal
dimensions for the shape parameters were significantly different for normal urine
versus stone-forming urine, and used fractal dimension for medical screening of
patients with potential for kidney stone problems. A light microscope was con-
nected to an image analyzer and the perimeter was measured at different scales and
length versus scale was plotted on a log-log graph. They also looked at dissolution
rate as a function of pH, and this allowed them to see that the mass transfer or ero-
sion from the surface was controlled by both the phase transition of Ca-oxalate
diphosphate to Ca-oxalate monophosphate and by diffusion. Both ionic and non-
ionic inhibitors played a role in the process.
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Erosion and dissolution may also be studied as dynamic growth processes, where
fractal fingering patterns can be explained by diffusion models similar to the parti-
cle aggregation growth models. This has applications for the interpretation of fos-
silized patterns on shales, as shown in Van Damme (1989). There are many fos-
silized patterns which appear to be biological (dendrites) but which have been
formed by viscous fingering. A better understanding of the processes which form
these fractal fingering patterns could lead to a better understanding of Earth’s early
history.

4. DISCUSSION OF MEASUREMENT METHODS

We identified and described seven techniques to measure fractal dimension of sur-
faces. We found that natural surfaces do not have a unique fractal dimension; the
fractal dimension seems to be very dependent on measurement method, and may
differ even within a single measurement technique. Yet, the application of fractal
geometry to problems in the earth sciences ultimately depends on the accuracy and
reproducibility of fractal measurement, at least within a single method, if not
between different methods. Several of the studies we reviewed compared two or
more of the seven techniques for measuring fractal dimension. These are listed in
Table 3. From this small grouping, it appears that there may be a tendency for
some methods to measure systematically higher fractal dimensions relative to other
methods.
Four of the methods for measuring fractal dimensions of surfaces require taking
either vertical profiles (divider method and spectral method) or horizontal cuts
(box method, slit island method). Only the triangle method combines the horizon-
tal and vertical slices into one measurement. The theory of fractals implies that an
isotropic, self-similar fractal surface should have the same fractal dimension,
whether one measures the dimension from vertical profiles or from horizontal con-
tours. However, if a surface is self-affine rather than self-similar, with vertical
properties changing at a different rate with scale than horizontal properties, then
vertical profiles and horizontal slices would measure different fractal dimensions.
Thus, it is not surprising that the same surface would have different fractal dimen-
sions, depending on whether one measured it with vertical profiles or horizontal
contours.
Most of the fractal dimensions measured by the divider method were lower than
those measuring the same surface by other methods, including other methods using
the same orientation. As discussed in section 2.1 above, the divider method often
gives fractal dimensions near one. One explanation for this low fractal dimension
is that when a surface scales differ in the horizontal and vertical directions, and the
horizontal resolution is near the crossover length, the fractal dimensional incre-
ment will be near zero (Brown, 1987). Brown suggests magnifying the profile
height repeatedly until a stable fractal dimension is obtained. Most of the divider
method measurements presented in Table 1 did not address this problem, and this
may explain why the fractal dimensions found with the divider method are so low.
Most fractal dimensions measured by the power spectral method were larger than
those measuring the same surface by other methods. Aside from the problems of
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measurement resolution near the crossover point, there may be other more funda-
mental differences between the spectral method and the other techniques. The
spectral method uses integral transformations, while the divider method approxi*
mates segments of curves with straight lines, and one might speculate that the dif-
ference between integral measure and differential measure may contribute to dif-
ferences between these two methods.

Fox (1989) applied the divider method to a discrete random series of specified
spectral forms in order to compare the divider and power spectral methods. He
found that the power spectral relationship for computing the fractal dimension did
not hold over the entire range of analysis, and that the relationship between fractal
dimension and power spectral exponent was not linear over all fractal dimensions.
He found that the spectral technique tends to overestimate the fractal dimension at
lower values of D, and to underestimate the fractal dimension at higher D values.
Also, Fox found that fractal analysis could not distinguish stationary and non-sta-
tionary surfaces. Here, stationary means that the mean value of all profiles taken
through the surface should be identical, while a non-stationary surface would have
trends. Yet both the divider and power spectral techniques assume homogeneity
over the measured interval. The power spectral method requires pre-processing to
remove trends; the divider method, as currently applied, does not require any trend
removal. He suggests the need for some statistical foundation for using the divider
method.
The fractal dimensions measured by the box and slit-island methods listed in Table
3 are high if compared to divider method, and low ff compared to spectral method.
There was only one study which compared box and slit-island methods and this
showed a slightly lower D value for slit-island. The box method and slit-island
method are comparable, because both methods analyze horizontal cuts. The basic
difference is that the slit-island method assumes that the size distribution of the
population of shapes reflects the self-similarity, while the box method requires the
measurement of all of the shapes at different scales. It is possible that interactions
between processes and materials may be such that the population of large shapes
may be different from the population of small shapes. Large features, for example,
might be formed of different material from smaller features, and this would lead to
a non-linear slope on the log-log graph for the slit-island analysis. However, the
box method applied to the same data would consider all of the shapes at every
scale, so that an average would be derived from the data, and this might result in a
straight line, and a different fractal dimension.
Only a sample of the surface can be used for measuring fractal dimension, and
there are no rules as to what is a proper sample. A set of north-south vertical pro-
files may give a different fractal dimension than a set of east-west or radial vertical
profiles. What about horizontal cuts? Should a set of contours at different cutoffs
be used as the sample, or a single contour or cutoff?. What happens if the slice is
not vertical or horizontal but inclined? If the fractal dimension changes between
different profiles, or between different horizontal cuts, what type of averaging
(arithmetic, harmonic, geometric) should be used to determine the fractal dimen-
sion of the whole surface? Or does the absence of stationarity and self-similarity
indicate a situation where fractal analysis should not be applied?



There are several operational problems common to all of the direct measurement
techniques. One of these is the problem of the remainder. For the divider method,
as one approaches the end of the curve, there will be some quantity which won’t fill
the last ruler. Aviles et al. (1987) discuss three ways of handling the remainder. One
way is to use only those rulers which give a remainder less than a specified value or
tolerance. A second way is to add the straight-line distance l~tween the ruler and
the end of the curve to the total length. A third way is to round up the remainder.
The choice of method for handling the remainder may lead to different estimates of
fractal dimension, and these differences should be considered as part of the error of
the measurement. If the approach of marking segments along a baseline is used
instead of marking segments on the curve, then the remainder problem can be
avoided, by re.cursively subdividing the total length of the baseline into halves.
There is also a potential remainder problem with the box and triangle methods. As
the grid coarsens, there may be some area which doesn’t fit the new discretization.
The spectral method handles the remainder problem by normalizing the power
spectral density with the profile length, and by tapering. The slit-island method also
has a remainder problem, which hasn’t been addressed in the literature. What hap-
pens to islands which cross the boundaries of the field of study (Figure 5.a)?
Should they be ignored, or partially counted?

Another operational problem of fractal dimension measurement is the estimation
of the slope from the log-log plot. There is no consistent way of estimating the
slope, and different methods can give considerably different results. The slope may
be estimated by a linear regression, or other standard curve-fitting techniques.
Often, only part of the plot will be used to calculate the slope, while other
researchers will use the entire plot. The slope is often somewhat curved, rather
than straight. Does this curvature indicate that the fractal theory is not applicable
to that particular data set, or is this just the expression of lack of self-similarity of
the data? What does it mean if the curve is concave up versus concave down? Some
researchers choose a particular straight section of the curve for the estimation of
slope, explaining that the straight segment is the range of scales over which the
fractal theory applies. If an error analysis were applied to the slope estimation, the
error range for the fractal dimension could be as large as the possible range of frac-
tal dimensions. Many of the studies do not estimate errors, or they estimate only
one aspect of the error, such as the curve-fitting error, while ignoring others such
as the remainder error.
Fractal dimension measurement would benefit from having some means of calibra-
tion, so that the measurement method could be applied to some standard profiles
or surfaces with known fractal dimensions, and a correction factor applied if neees-
sary. Aviles et aL (1987) calibrated the divider method by applying it to the west
coast of Britain which Mandelbrot had previously measured (D ffi 1.25; Mandel-
brot, 1982), and to yon Koch curves (D = 1.262). If a measurement method is cali-
brated on map data and compared with another researcher’s measurement of frac-
tal dimension of that data, then both the range of scales and the map must be the
same for the previous measurement and the new measurement.
Another consideration which is somewhat related to calibration is that of the range
of acceptable fractal dimensions for the data set under consideration. What if frac-
tal dimension is less than Euclidean di~hension? Several of the studies reviewed in
this paper showed a fractal dimension which was less than the Euclidean dimension
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of the surface. Does this mean that the surface is not fractal? On the other hand,
what if the fractal dimension is greater than 2.5? Operationally, it may not be pos-
sible to measure a surface which has a fractal dimension greater than 2.5. If the
fractal dimension of a physical surface is greater than 2.5, then the surface begins to
curl, creating overhangs and tunnelling depressions. If this were a solid phe-
nomenon, such as a sandstone which has partially dissolved cement at the surface,
then a horizontal profile through the sandstone would curl under around the
rounded grains (Figure 10). A landscape-scale example of this problem is that of
overhanging cliffs and of caves. If this type of surface is not measurable, how does
the presence of overhangs distort the accuracy of the fractal dimension measure-
ment? If there are no overhangs or caves, is it possible to have a fractal dimension
(ofa surface) exceeding 2.5?

Overhangs ~

Tunnels
Figure 10: Overhangs: this profile has both overhangs and tunnels, both of which may present

measurement problems.

The fractal dimensional increments shown in Table 1 indicate that the variogram
and distribution techniques, in general, measure much higher fractal dimensions
than the more direct methods. Burrough (1983a,b; 1989) applied the variogram
method to soils data, and explained that the high fractal dimensions indicated the
high local variability of soils properties. Sandstone pores measured by the distribu-
tion method also showed fractal dimensional increments greater than 0.5. The
sandstone pores and cave distributions are volume fractals, rather than surface
flactals. Measurements of volume fractal dimensions seem to have increments
above 0.5, while those of surface fractal dimensions seem to have increments below
0.5. Does the fractal dimensional increment change as Euclidean dimension
changes? Most of the papers we reviewed implied that the increment doesn’t
change with Euclidean dimension, so that one can take the fractal dimension of a
line (such as a profile or a contour) and simply add 1 to make it a surface, or 2 to
make it a volume. Yet Curl’s (1986) analysis of cave distributions showed that the
fractal dimensional increment was not the same for different lines versus volumes
(Table 1). The fractal dimension of cave lengths was around 1.4, while fractal
dimension of cave volume was 2.8, not 2.4. Similar studies to probe the potential
inconsistency among profile, contour, surface, and volume measurements are
needed.

We are mainly interested in the practical quantification of fractal or similarity
dimensions for natural patterns and do not attempt to distinguish the mathematical
differences in the definitions of different dimensions. However, some of the confu-
sion and ambiguity in quantifying a fractal dimension could be related to differ-
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ences in the procedures (thus definitions) among different dimensions. There are
many different ways of defining fractal dimension, depending on the nature of the
system being described and the characteristics of the model being used to represent
the system. More attention needs to be given to the problem of linking the mathe-
matical definitions with the practical applications.

5. DISCUSSION OF APPLICATIONS
Most of the applications reviewed in this report have been listed in Table 1, along
with the method used, and the fractal dimensional increments obtained. Applica-
tions of fractal measurement to problems in the earth sciences seem to fall into
several general categories. These include testing whether or not some feature is
fractal; characterization of surface geometry to determine some internal property;
use of fractal geometry to study formation and degradation processes; use of fractal
slopes to determine multiple processes and the scales over which they are domi-
nant; use of fractal geometry as a tool for interpolation and extrapolation; and use
of fractal geometry to derive empirical equations to estimate parameters which are
difficult to measure.
The first group of studies aims to determine if some feature being measured is self-
similar or self-affine (Hirata, 1989; Matsushita and Ouehi, 1989) or to evaluate the
reproducibility and accuracy of fractal measurement techniques (Gilbert, 1989;
Cart, 1989, Miller et al., 1990). The primary criteria for determining the self-simi-
larity of a surface is based on whether or not a straight line can b e fitted to the log-
log plot of the measurement versus resolution, and that the fractal dimension
obtained from the slope is not trivial. If the slope of the line depends on the orien-
tation of the sampling, then the surface is considered to be self-affine instead of
self-similar, and the data can then be transformed, in principle, by rescaling to
determine the fractal dimension for the data set. The log-log plots in many earth
science studies in this review appear to be very scattered and do not follow the ide-
alized model with a simple straight line. When the log-log plot is not linear and no
unique slope can be determined, there is a need for procedures to systematically go
beyond simple fractal analysis and extract useful information or parameters from
the nonlinearity of the log-log curves. If we use a statistical approach, fractal
dimension is likely to be a lowest order parameter, to be complemented by a class
of higher order parameters to characterize the scaling properties of spatially dis-
tributed data.
Several studies used fractal measurement to characterize some surface in order to
determine its underlying structure or some internal property. This category
includes the measurement of topography by Norton and Sorenson (1989), who
found some correlation between fractal dimension and elevation, rock type, frac-
ture abundance and glacial smoothing. Barton and Larson (1985) and La Pointe
(1988) characterized fracture networks in order to correlate these characterizations
with fracture density and connectivity. The laboratory studies of fractal geometry of
rock fractures also fit under this category (Pyrak-Nolte et al., 1987; Nolte et al.,
1989, Mandelbrot et al, 1984; Underwood and Banerji, 1986; Huang et aL, 1990;
Denley, 1990, Mecholsky and Mackin, 1988), where the fractal dimension of frac-
ture features is measured under different physical conditions, to see if there is any
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relationship between the underlying physical structure and the measured fractal
dimension. One problem with this application is that the surface fractal is being
used to determine an internal structure which is a property of the entire rock mass.
The change in the physical structure in the three-dimensional coordinate system
may not be accurately represented by a measurement of the surface fractal dimen-
sion.
A third general category for applications is the measurement of fractal geometry in
order to determine something about formational or degradational processes.
Akbarieh and Tawashi (1989) studied dissolution of crystals in urine as a function
of fractal geometry in an attempt to screen patients at risk for kidney stones. Van
Damme (1989) suggested the use of fractal measurement to aid interpretation of
fossil patterns. Langford et al. (1989) tried to relate the fracturing process to crack
branching and growth through the fractal dimension. Pore geometry studies such as
that of Krohn (1988 a,b) tried to relate fractal geometry to the extent of pore alter-
ation by pore filling and cements. To what degree does the fractal analysis improve
or enhance more conventional analyses? This will need to be determined sepa-
rately in different applications.

A fourth general category is the use of fractal geometry to unravel multiple pro-
cesses, and to determine the scales over which these processes are dominant. The
studies of the San Andre.as Fault trace (Okuba and Aki, 1987; Aviles et aL, 1987;
Scholz and Aviles, 1986) and the measurement of field and laboratory fractures
(Brown and Scholz, 1985; Power and Tullis, 1991) were focussed on determining
the ranges of spatial scales over which the fractal dimension was invariant. Bur-
rough (1983 a,b) looked at nested variations of soil properties. One challenge for
these types of applications is to separate the inflection points which separate log-
log slopes which differ due to anisotropy (self-affine fractals) from those inflection
points which separate slopes which differ due to multiple processes with different
scaling properties. One approach to fractals which display multiple scaling is mul-
tifractal analysis (Lovejoy and Schertzer, 1991).
A fifth category for fractal applications is the use of fractal measurement for inter-
polation and extrapolation. Curl’s (1986) use of cave length distributions to
extrapolate volumes and lengths of small caves is an example of this category.
Snow’s (1987) use of fractal dimension of streams, as a measure of stream length or
wandering, is another example. Burrough (1983a,b) tried to relate fractal distribu-
tions to the interpolation of data measurements over a large field. These types of
applications may enable the refinement of conventional statistics and geostatistics.
Mandelbrot (1986a) comments on the relationship of in,terpolation and extrapola-
tion to local and global fractal dimensions, respectively. Since local and global
fractal dimensions may differ for self-affine fractal surfaces, protocols for
interpolation and extrapolation may need to be different.
Finally, the last general category is the use of fractal measurement to derive some
empirical equation in order to estimate some other parameter which is difficult to
measure experimentally. Tyler and Wheatcraft (1989) derived equations for soil
water retention as a function of fractal dimension. Schlueter et al. (1991) tried to
relate fractal dimension of pore geometry to permeability. Toledo et al. (1990)
related hydraulic parameters to fractal geometry using thin-film physics. Rieu and
Sposito (1991a,b) derived several relationships for soil physics from distributions
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using the fractal dimension as the measurable parameter. Pfeifer et al. (1989) and
Jaroniec et al. (1990) tried to use correlations between fractal dimension and physi-
cal chemical properties in order to refine surface adsorption theories. This category
of application is very specific to the particular study, and may depend on new con-
ventions of recording experimental data.

6. CONCLUSIONS
Based on the literature review performed in this report, we reach the following
conclusions.

(1) Fractal dimension may vary systematically with measurement metho~L
The measurements listed in Tables 1 and 3 show several tendencies. Divider meth-
ods tend to give low values for fractal dimension. The reasons for this may have to
do with the self-affinity of the natural surfaces. Corrections suggested by Brown
(1987) and by Matsushita and Ouchi (1989) should be further evaluated. Power
spectral methods tend to give high values for fractal dimension. Also, power spec-
tral methods require many processing steps, introducing potential variations due to
different methodology at each step. Power spectral log-log plots tend to be much
more curved than the other log-log plots. This introduces more uncertainty in
curve-fitting. Box methods and slit-island methods tend to give fractal dimensions
in the intermediate range. We have found only one publication which utilized the
triangle method. Since this technique simultaneously measures the horizontal and
vertical variation, both the self-affinity and self-similarity are involved. A statistical
analysis of measurements made by all of the different methods over a set of surfaces
could help verify the tendencies shown in Tables 1 and 3. Fox (1989) did this for the
power spectral and divider methods and concluded that there were non-linear sys-
tematic differences between these two methods.

(2) Operational steps in the measurement of fractal dimension and the underlying
assumptions of each measurement step need to be scrutinized.

The operational steps include orientation of data, size and direction of sampling,
remainders, slope estimation, error of measurement, and interval over which fractal
dimension is measurable. Problems concerning orientation of the measurement
plane, as well as considerations of what constitutes a valid sample for fractal dimen-
sion measurement need to be clarified. Remainder problems and boundary prob-
lems need to be considered and clearly stated when applying fractal measurement
to research problems. Except for the triangle method, the other four ’direct meth-
ods’ require the transformation of a line to a surface. The assumptions made for
this transformation to be valid need to be better understood. There needs to be a
better conceptual understanding of what the measurable ranges of fractal dimen-
sion imply, as well as an understanding and statement of the cumulative error
involved in measurement. There is a need to better understand the shapes of the
curves, what that shape implies, and when, where, or how it is valid to convert that
data to a straight line. The present means of ’calibrating’ fractal dimension, i.e., by
using deterministic fractals such as von Koch curves, or by using the coastline of
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Britain, need to be evaluated. Are there better ways of calibration? The concepts of
fractal population distributions are different from fractal analysis of a boundary.
The assumptions made when one uses the slit-island technique (a population dis-
tribution) to measure a boundary (such as a fracture surface) need to be clarified.

(3) Fractal models need to be used with caution in earth sciences applications.

We reviewed various applications of fractal models in the earth sciences. Applica-
tions tend to fall in 6 categories: measurement to determine the validity of fractal
theory or measurement techniques; characterization to determine underlying struc-
ture; using fractal geometry to determine formation or degradation processes; ana-
lyzing fractai slopes to determine multiple processes and the scales over which a
process is dominant; interpolation and extrapolation; and the derivation of empiri-
cal equations based on measured fractal dimension in order to determine some
hard-to-measure parameter. The fractal dimension may allow the extraction of
information embedded in the data which would not otherwise be visible. While the
fractal theory stimulates many innovative approaches to studies of geological pro-
cesses and phenomena, more studies are certainly needed to clearly demonstrate
the practical usefulness of fractal measurements in the earth sciences.
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