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Abstract~ The unexpected possibility of a multiply
connected character of the space of the Universe is
demonstrated for the non~pecialists by using simple
eramples. Indications for the realization of this possi-
bility in the actual Universe are briefly discussed and
mentione~

its cosmological implications

FROM TOPOLOGY TO CRYSTAL STRUCTURE
When speaking about the ’topology of the Universe’ one may be inclined to think
of the connectivity properties of material structures within the Universe, which -
according to our present knowledge - may be ’filamentary’, ’bubbly’, ’frothy’,
’sponge like’ etc. (Melott, 1990). There is, however, a possibility for a deeper kind of
a ’topology of the Universe’, when the space itself (even a possible emptiness
alone) does have its own nontrivial connectivity properties. E.g., going always
straight ahead in the space one may find himself at his starting point after having
covered some characteristic distance depending on the direction of the journey (cf.
Ellis, 1971; Wolf, 1967). Recent astronomical observations - and also quantum-
cosmological considerations - have made this possibility worth of special attention
(Pa~l, 1971; Pa~l et ai., 1991; Fang and Sato, 1984; Fang and Mo, 1987).

In order to make the somewhat mystic or incredible spatial recurrences under-
standable for the specialists of other fields of sciences it is customary to consider
first the case of two-dimensional spaces (surfaces) inhabited by flat beings



(’observers’ or ’travellers’) and start with the simple example of an infinite cylinder.
Here there is clearly only one single direction in which the fiat traveller may return
to his original place, if the route chosen by him is the straightest possible one while
crawling on the surface (without superfluous turns aside) - but such a return is
impossible in all other directions. In the usual Euclidean plane there is no possibil-
ity for a linear return at all. The transition from one of these cases to the other
seems fairly easy. One may always roll up a fiat (uncurved) plane into a cylinder so
making a ’multiply connected’ surface out of a ’simply connected’ one. - Obviously
in the simply connected plane there is only one straight line connecting any two
given points, while in the multiply connected cylinder there may be infinitely many
of them.
This simple example is relatively easy to reformulate in such a mathematical form
as to permit generalization to any dimension and space curvature. Imagine first a
picture just painted by fresh paint on the surface of a cylinder, which is then sent
rolling quickly on a plane sheet of paper before the lapse of time needed for the
paint to dry. Clearly repeated images of the picture will appear painted on the
paper in excactly periodical distances. One may say in a somewhat more abstract
language that an infinite set of equidistant pictures on a plane precisely ’represents’
a single picture on a cylinder, or that by identifying all the points corresponding to
each other according to a ’group of parallel translations’ in a plane (n times a given
length d) an equivalent representation of a cylinder is obtained from a two-dimen-
sional Euclidean space (plane). The plane is called the simply connected ’covering
space’ and the translations generate a ’compactified’ multiply connected space, the
cylinder. The short range ’local’ properties of these spaces coincide, but the long
range ’global’ ones (e.g., long range returns) differ. The plane and the cylinder are
said to represent topologically different ’space forms’ of the fiat (Euclidean) space.
In a more general language one may say that any ’space form’ of constant curvature
can be derived from a simply connected spherical, flat or hyperbolic universal cov-
ering space (of positive, zero or negative curvature) by introducing into the latter a
discontinuous group of fixed point free isometric transformations and identifying
its points which correspond to each other under the transformations of the group.
This identification leads to the multiply connected ’quotient space’. A set of
infinitely many points of the original space (which are connected by the
transformation group) plays the role of a ’single point’ in the new space.

According to this scheme there are five topologically different space forms of the
two-dimensional Euclidean space. The first is the trivialplane with no compactifi-
cation (recurrences, identifications), the second is the (infinitely long) cylinder
obtained by a single sequence of translations, i.e., identifications by equidistant
steps along a single direction, the third is the (finite) torus obtained by two alge-
braically independent sequences of translations, i.e., identifications by steps along
two different directions, the forth is the (infintely long) M6bius band obtained by
one sequence of translations combined with a reflection, while the fifth is the K/ein
bottle obtained by two sequences of translations, one of them combined with a
reflection. It is easy to see that if one tried to use two translations combined with
two reflections, then a fixed point would emerge whose local properties would dif-
fer from those of other points of the space. So a two-dimensional Euclidean space
may have 3 space forms with infinite extent and 2 space forms without infinite
extent! - Note that this finiteness is essentially different from the much better
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known finiteness of the surface of the simple sphere (i.e., two-dimensional space of
positive curvature). The latter is isotropic, i.e., the distance of returns is the same in
all directions, while the former is necessarily anisotropic.
In the same spirit but somewhat more generally one can construct a three-dimen-
sional ’cylinder’ by introducing one sequence of translations in the three-dimen-
sional Euclidean space. In this case not infintely long two-dimensional strips, but
infintely long and wide three-dimensional layers would ’repeate themselves’ (would
be identified) in the original three-dimensional covering space. Without enumer-
ating all the 18 possibilities for the three-dimensional Euclidean~space forms we
only mention here the three-dimensional torus (designated by T~) generated by
three independent sequences of translations (without reflections or rotations)
which is the simplest case when the three-dimensional Euclidean space can be fully
’compact’ (finite, closed) and can have finite total volume.
For visualization a compactified space may also be thought of as a system of
conguent cells in a crystal lattice with some definite rule of alignment of the ceils.
In general the cells may have different forms and the alignment may happen
according to different combined translations, rotations and reflections as well. Only
specific transformations lead to meaningful compactifications. This also applies to
spaces of nonzero curvature, although the meaning of ’translation’ or ’rotation’ is
somewhat more obscure in these cases. For details see Ellis (1971), Wolf (1967).
Obviously the observable properties of a multiply connected universe are identical
with those of the corresponding ’universal covering model universe’ populated by
equal configurations in strictly congruent cells and all the known formulae of
observational cosmology hold in this crystal-like covering. These models naturally
show some kinds of periodicities according to spatial distance. This is how they can
be discovered astronomically. The question is then, whether there are indeed such
discoveries.

FROM CRYSTAL STRUCTURE TO WORLD MODEL
Hints to actual periodicities in the space distribution of astronomical objects first
appered 20 years ago in connection with quasars (Padl, 1970; Padl, 1971; Fang and
Sato, 1984; Fang and Mo, 1987 and references, therein), but have failed to pass the
proper statistical significance tests. Really slg~ificant periodicity has first been
found in the space distribution of galaxie~ by Broadhurst et aL 0990). It turned out
that the typical distances between galaxy pair~ are distributed according to a non-
random, periodic pattern                              .wh°se regularity depends on the. world model, more par-
tlcularly on the forces acting on the expansion of the Llmverse (PaAl et al. 1992).

The so called autocorrelation coefficient of galaxies indicates the relative excess of
galaxy pairs with a given spatial separation, This spatial distance of galaxy pairs is,
however, not a directly observable quantity, it can only be calculated from the mea-
sured redshifts of spectral lines in the light of the galaxies. This calculation in turn
~elds different results depending on whether the universe is filled simply by the
usual cosmic matter (’dust’), which - according to Einstein’s General Theory of
Relativity - is gravitationally attracting, or it is filled mostly by the modern quart-



tumtheoretical ’vacuum’ (a background sea of energy without particles of
identifiable form), which is gravitationally repulsive (Patti and Luk:ies, 1990). In
either extreme case of dust or vacuum dominance the calculated periodicity of the
space distribution of galaxies turns out to be relatively poor, see Figure I and Fig-
ure 2 (although some 15 partially irregular periods may be distinguished even in
these cases). However for a vacuum/dust ratio equal to 2/1 one finds 17 fairly regu-
lar periods (Fig. 3). The superiority of the latter model becomes even more promi-
nent, ff one calculates the periods also by an independent method (i.e., by mini-
mizing the squared deviations of the places of maxima of the galaxy distribution
function from an equidistant set of distances) and indicates the multiples of this
period on the diagram of the autocorrelation function (equidistant vertical lines on
the Figures). The periods defined in these two different ways coincide only for the
model of Figure 3, while in Figures 1 and 2 the two kinds of periods differ so
strongly that the phase differences accumulate to a full period. Consequently this
tuning of periods singles out the best cosmological model, unless one is willing to
accept that prominent periodicities appear just by mere chance without any deeper
physical reason.

Thus if one looks for a peril/city, which may be a signal for the topologically non-
trivial character of the space of the Universe, then one finds a particular world model
filled with twice as much vacuum as dust. This model also has further important
advantages for cosmology.
Astronomical observations seem to show that the attracting dust gives about 1/3
part of the critical density needed to make the space of the Universe almost fiat
(uncurved, Euclidean). Now we may have found the remaining 2/3 part in the form
of vacuum and so the old ’flatness problem’ may have disappeared. In other words a
kind of ’missing mass’ seems to have been found. - On the other hand In these
moderately vacuum dominated models the total expansion time measured from the
Big Bang to the present epoch is essentially longer then in the dust models and so it
is much easier to find time in them for the oldest stellar systems, i.e., a ’missing
time problem’ is also easier to solve in this case.

FROM WORLD MODEL TO "WORLD’S END"

However the new model may have terrifying consequences as well. The obtained
density of vacuum 10O00 times surpasses that of the thermal cosmic background
radiation. This implies that - according to the Stefan-Boltzmann law - our
vacuum is already 10 times supercooled and so may explode In any moment. When
in the yen! early Universe a supercooled vacuum was destroyed by a phase transi-
tion, then some bosons mediating interactions acquired rest energy and mass (out
of the released vacuum energy). If the present supercooled vacuum gave mass to
the remaining massless bosons, then those bosons could be e.g., the photons medi-
ating the electromagnetic interaction, implying that the range of electric force
would fall from infinity to about a millimeter or so (Pa~l, Horv~th, and Luk~ics,
1992). If gluons got masses, then the stability of nuclei and the nuclear fusion pro-
cesses might change (e.g., in stars).
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