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Abstract: Deviations from symmetries are discussed. We
distinguish two cases: (i) symmetric laws + asymmetric
external disturbances lead to approximately symmetric
actual states; (ii) symmetric laws without other
influences lead to states asymmetric in an extent
determined by the laws themselves via spontaneous
symmetry breaking.

INTRODUCTION

This paper is devoted to the mathematics of the different kinds of symmetry
breaking, considering the aims of the present issue. Our goals are limited: we do
not want to go into fine details of definitions, but try to demonstrate that a symme-
try may be broken for different reasons and to show how the extent in which it is
broken can be quantified.

1. ON SYMMETRIES
Instead of a complete definition let us use the following one:

A SYMMETRY IS A TRANSFORMATION LEAVING SOMETHING
INVARIANT.

Example: consider a sphere. By rotating it remains the same.

For a precise definition of geometrical symmetries see another paper in this issue
(Luki4cs, 1993).
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2. ON BREAKING

If there is no symmetry at all, nobody speaks about broken symmetry. We speak
about a broken symmetry if

1) the situation is almost symmetric;

2) the situation ought to be symmetric still it is not.

The symmetry can be broken
1) by external asymmetric influences;
2) spontaneously.

3. ON THE EXTENT OF AN APPROXIMATE SYMMETRY

The measure is slightly subjective. However, if there is approximate symmetry, then
the ideal symmetric situation can be visualized, and the actual one can be compared
with it.

Example: the ellipsis. Its equation is
r=r(p) = R/(1 + e cos ¢) 1)

where ¢ is the excentricity. For ellipses 0<e<1I; for e<<1 the ellipsis is almost a circle.
So the extent of the deviation from the symmetric circle (rotational symmetry) is mea-
sured by the dimensionless e.

If the symmetry breaking is caused by an external influence then generally it is pro-
portional to the influence (and then one can compare the acting forces). If the
breaking is spontaneous, this is not necessary at all.

4. AN EXAMPLE FOR NON-SPONTANEOUS SYMMETRY
BREAKING: OBLATENESS

A rotating fluid body is often an oblate spheroid (although other solutions of the
hydrostatic equations exist as well (Chandrasekhar, 1969)). For small angular
momentum () one can get simple approximate formulae as follow:

The rotation results in an inertial ‘force’. Including its ‘potential’ one gets
V(r, ¢) = —GMfr + V20r%sin? ¢ )

Then the equipotential surfaces (of which one is the surface of the fluid (Thorne,
1971)) are given by roots of a cubic equation. Again for small () they can be
approximated in a transparent way. Consider a value V,<0. Thenr, = r (¢):

ro = (~GMIV,){1 + H[(GMOY(V,3)] sin? o} 3)
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Then the extent of asymmetry or symmetry breaking is the ratio of the two terms in
the bracket {} for, say, ¢ = #/2. Substituting terrestrial surface data, the ratio is
0.0017, rather moderate.

5. ON SPONTANEOUS SYMMETRY BREAKING

Again instead of a precise mathematical definition here we adopt the following
transparent one:

THE SYMMETRY BREAKING IS SPONTANEOUS IF THE LAWS ARE
SYMMETRIC STILL THE MOST NATURAL CONFIGURATION (SAY
GROUND STATE) FOR THEM IS ASYMMETRIC.

The simplest example is mechanical equilibrium in a potential V(x) = V(-x). The
potential is even, ie., mirror-symmetric: this will be the symmetry. The most natural
configuration is now the equilibrium one; if that is not unique, then the ground state
among them. Here come the details.

The condition for equilibrium is

x=x, (dV/dx), =0 “
For simplicity we restrict ourselves to polynomials, such that

V(©0)=0

V(o) =+ )

V(—x) = V(x)

We are going up with the degree of the polynomial.

PO
The only possibility compatible with (5) is
Votx) =0 (6)
Then (4) holds everywhere; the ground state is degenerate. This case is trivial.
Py
Conditions (5) cannot be satisfied: this class is empty.
Py
From (5) we get
Vo(x) = ax?, a>0 Q)
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Figure 1: Quadratic potential. Stable equilibrium at the center.

This potential, for a=1, is shown as Figure 1. The only solution of (4) is x=0 (heavy
dot).

SYMMETRIC EQUILIBRIUM STATE FOR SYMMETRIC LAWS.
Py
Conditions (5) cannot be satisfied: this class is empty.
P,
From (5) we get
Vy(x) = ax? + bx4, b>0 ®

This potential, for some values of a and for b=1, is shown on Figure 2. The equilib-
rium condition (4) leads to

x(a + 2bx?) =0 €))
Now, x,,=0 is always a root, but for a <0 two other ones exist as well:
Xo4 = *(—a/b)” (10)

Then, as shown on Figure 2, fora=0 x,,=0 is the only equilibrium point, and is an
energy minimum (heavy dot). However, for a<0 the situation is qualitatively
different.
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Figure 2: Quartic potentials; @ = +1 (dot), 0 (short dash), —0.5 (long dash), —1 (solid). Heavy dots at
stable minima, circles at unstable maxima.

As seen, x,, is an equilibrium point, but energy maximum (circle). A local maxi-
mum is an unstable equilibrium: for small perturbations the state goes away and
returns not. On the other hand, the new x s are stable minima (heavy dots). After
some transient evolution the mass point settles down at one of x,,.

ASYMMETRIC GROUND STATE(S) FOR SYMMETRIC LAWS.

Now, notice that the actual final state will lack the mirror-symmetry. In the same
time the set of ground states is still symmetric: there is one on the right, one on the
left. Similarly, both are equally probable (50-50 per cent) as final states. This sym-
metry is a consequence of the symmetry of the potential. But the symmetric poten-
tial ¥, leads to asymmetric final states if a<0.

This phenomenon is called spontaneous symmetry breaking, since in a dynamical
evolution from symmetric laws and initial conditions the system goes into an
asymmetric actual state without any external asymmetric influence.

The very simple example shows that no very specific or complicated mechanisms
are needed for this spontaneous symmetry breaking. Still, one generally expects
symmetry from symmetric laws and has the tendency to stop at the symmetric solu-
tions. So, remember the possibility of spontaneous symmetry breaking.

The necessary condition for such a breaking is the appearance of a ‘double-bot-
tomed potential’. This is known from various parts of natural sciences. Some cases
will be seen in the following articles. In addition, we mention here three examples
from physics.
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1) Higgs mechanisms in particle physics (Langacker, 1981). Some hypothetical scalar
bosons may have quartic self-potentials V(®), where & stands for the wave func-
tion, so roughly | ® | 2is proportional to Higgs particle number or probability. (If
the potential is not polynomial, or higher than quartic, then the theory is not
renormalisable, the infinities from divergences cannot be removed, so the theory
has no prediction at all, i.e., is not a theory.) So Higgses spontaneously appear in a
‘number’ determined by the parameters of V(®), except if the average energy is
higher than V(0)-Vmin. (I.e., above the central peak of Fig. 2.) If the Higgses are
coupled to other particles, the interaction mimics other particle masses ~ | @ | 2
The mechanism was invented for renormalisable quantum field theories of vector
bosons, where particle masses are detected but would prevent renormalisation. In
such systems phase transition is expected when the specific energy passes through a
value in the order of the central peak: at high energy (temperature) the actual state
is symmetric, and going to low temperature this symmetry spontaneously breaks
down (“the state rolls down from the hill”).

2) Ferromagnetism (Kittel, 1961). Sometimes the interaction between electron
spins or orbital momenta is attractive and strong enough to prefer identical direc-
tions for neighbouring atoms. Then the ground state is asymmetric: magnetic
momenta pointing into a definite direction in average, although the laws are
isotropic in the 3D-space. This direction is, however, random, because the isotropic
laws lead to isotropy in probability. If the environment is not isotropic (e.g., the
weak geomagnetic field), then sometimes this anisotropy singles out the direction
(but the strength of a ferromagnet is prescribed by its physical parameters and is
definitely not proportional to geomagnetism).

3) Piezoelectricity of BaTiOz (Kittel, 1961; von Hippel, 1950). BaTiO; is a cubic
crystal. The expected location of the Ti ion is at the center, the actual one is excen-
tric by a fixed shift. In a very simplified way one may say that the 7i ion is fairly big
compared to O’s. The O’s are located at the centers of the lateral faces of the cube,
so restricting the room for Ti just in the center. Then it is ‘more convenient’ (say,
energetically) for the Ti ion to be excentric, which means a potential of qualitative
form of Figure 2. For a more correct and less transparent explanation see (Kittel,
1961); in an approximation a quartic potential is obtained. The configuration has a
hysteresis loop, but above a threshold value the external potential makes the Ti
jump into an oppositely excentric position, with reversed electric dipole moment.
This can be done with external pressure as well, and this is the reason for piezo-
electricity.

6. CONCLUSION
The most important message is:

REMEMBER: A SYMMETRIC POTENTIAL MAY HAVE MINIMUM IN THE
CENTER BUT MAY HAVE MAXIMUM AS WELL. SYMMETRIC LAWS
OFTEN LEAD TO ASYMMETRIC GROUND STATES WITHOUT ANY
FURTHER REASON.

Life is not always simple.
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