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Abstract Slight modifications of a crystal structure at
different org~ levels result in new structures related to each other. This possi-
bility seems not to be exhausted entirely by Natur~ In this contribution a hypothetical
carbon polymorph is described which consist$ of five-membered (C5) ring~ in contrast
to the known existing polymorph$. Some simple calculations make the model more
plausible.

1. INTRODUCTION
According to the well-known point of view, a crystal is a (theoretically infinite)
triply periodic material pattern in which the repetitive motifs are atoms (or sets of
atoms) (Feynman, Leighton and Sands, 1964; Kittei, 1961; Buerger, 1965). The
nature of the transition from the atomic (or molecular) organizational level to the
solid state level is an intricate problem and is far from being well understood; recall
for example the high temperature superconductivity.

Prior to going into the physical details, one may scrutinize the purely structural
aspects of this spatial order. This is, admittedly, the typical standpoint of the
’classical crystallographer’ (Buerger, 1965). In this approach, the emphasis is on the
concept of symmetry, in fact, that of the global symmetry (the mathematical output
of this is the group theoretical formulation of geometrical crystallography). How-
ever, one may not and must not ignore that there is an underlying topology that



precedes the global symmetry. Indeed, the traditional classification of the polyhe-
dral-frame structures of minerals (especially those of the silicates) is an implicit
application of this topological aspect (Bragg, Claringball and Taylor, 1965; Zoltai
and Stout, 1984).
By way of illustration, take some representative of covalent crystals. In an abstract
sense, the crystal structure of diamond can be interpreted as an (infinite) regular
graph of degree four (the C-C covalent bonds being the graph edges and the C
atoms being the vertices). Of course, this particular topology of the network of car-
bon atoms is made possible b~  the nature of the vertices. Here the valence of the
vertices is four, due to the sp~ hybrid state of the carbon. Although this valence
admits an infinite variety of linkages, the number of possible cases is strongly lim-
ited by the loca/symmetry of the vertices. This local symmetry results from the
highly directional character of the covalent bonds, and in the case of carbon sp3
orbitals it is equal to that of the regular tetrahedron. As for the realization, the
actually known cases are: diamond with its cubic (global) symmetry and a rare
hexagonal polymorph called a lonsdaleite (Zoltai and Stout, 1984). (They exemplify
the fact that the valence and the local symmetry of the vertices together do not
determine the actual crystal structure uniquely even on the level of topology.)

The relation of these hierarchy levels can be summarized in the following diagram(Fig. 1).

Votence of the
vertices

13lobol symmetry
of the structure

Fight= t: Hierarchy levei~ in a crystal structure.
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What is the heuristic significance of such considerations? Well, it may draw atten-
tion to the inexhaustible possibilities of matter. In the present contribution a hypo-
thetical model is given which will perhaps exemplify these ideas.

The recent discovery of the ’third modification of carbon’, (’C60 fullerene’,
’footballene’, etc.) (Kroto, 1989) demonstrated, among other things, that the car-
bon atom in sp2 hybrid state is able to build up a structure topologically distinct
from that of the graphite. Both structures form, in an abstract sense, a regular
graph of degree three, but in the C60 structure the original local D3h symmetry of
the carbon atoms is somewhat violated. At the same time, among the 6-circuits of
the graph 5-circuits (five-membered rings of atoms) occur as well. All this occurs at
the expense of some bond angle distortions which the system obviously tolerates.
Now the question is whether the topology of the diamond can be changed so that
the valence is preserved but the six-membered rings (6-circuits) are replaced by
five-membered ones.

2. THE PENTAMOND STRUCTURE

Take a tiling composed of pentagonal tiles as shown in Figure 2 (solid line; plane
group: p4g). Let a pentagonal unit correspond to the skeleton of the cyclopentane
(CsH10) molecule. It turns out that such a quasi-two-dimensional net can be con-
structed with relatively small angle distortions (with respect to either 109° 28’ or
108°). So, our tiling is merely a plane projection of a spatial structure in which the
symmetrically repeated units are not the cyclopentane skeletons but those of a
larger molecule shown in Figure 3a (plane projection) and in Figure 3b
(perspective view). This latter molecule is a bridged-ring system to which the
systematic name tetra-cyclo-[6,2,1,13,6,011,12]-dodecane may be given (for the
nomenclature, see e.g., (Barton, 1979)). Figure 3b shows that it resembles a cradle.
If the cradles in Figure 2 are thought to be oriented as in Figure 3a, in the same
structure one finds cradles upside-down which are oriented in the other diagonal
direction.

Now reflect this structure in an appropriate horizontal mirror plane and at the
same time shift it in a diagonal direction by a length half of the cradle (glide reflec-
tion). Another horizontal net is obtained (dashed line in Fig. 2). Connect these two
layers in an appropriate way (dotted lines in Fig. 2). Infinite repetition of this pro-
cess results in a three-dimensional structure (note that repetition of the horizontal
layers can be carried out by various other types of compound symmetry transforma-
tions).

It is like diamond (an infinite regular graph of degree four) and different from dia-
mond (composed of 5-circuits instead of 6-circuits in the horizontal layers). In fact,
the structure of diamond can be conceived of as an infinite repetition of cyclohex-
ane skeletons of chair conformation, in a similar manner (for comparison, see two
of such layers of diamond projected onto a (111) plane in Figure 4; note that lons-
daleite only differs in that the layers completely cover each other when viewed from
above (Zoltai and Stout, 1984; Merlino, 1990), accordingly, the cyclohexane rings
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Figur~ 2: Projection of a layer of pentamond structure o~ the (001) plane (with the unit cell indicated).
Dotted fines represent bonds connecting the uppe~" pentagonal net (solid lines) to the lower pentagonal

net (dashed lines); for eask~ visualization, they are only drawn within the marked unit cell.
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providing the interlayer connection are of eclipsed conformation (Balaban, 1989)). 
Referring to the similarity and dissimilarity, we coined the name pentamond 
(pentagon + diamond) for this structure. 

Figure 3: A repetitive unit of pentamond consisting of 12 C atoms (4 of type a, 8 of type p); (a) plane 
pmjection; (b) perspective view. 

One can distinguish two types of carbon atoms according to their role in the struc- 
ture: C(a) and C@) (cf. Fig. 3a). The C(a) atoms belong completely to a horizon- 
tal layer, i.e., they have no interlayer bonds (check this type of vertex in Fig. 2). 
Accordingly, they are shared by four cyclopentane rings within one and the same 
layer. The function of the C@) atoms, on the contrary, is twofold: not only are they 
common vertices of (three) cyclopentane rings in a layer, but they are responsible 
for the interlayer linkage as well (cf. again Fig. 2). 



Figure 4: Projection of a layer of diamond structure on the (111) plane.

3. CRYSTALLOGRAPHIC DESCRIPTION
It is not difficult to see that we are given a tetragonal structure with a unit cell such
as indicated by a square in Figure 2. The height of the unit cell is twice the inter-
layer distance (the latter measured by the distance between two C(a)-s one over the
other in adjacent layers).

The atomic positions are as follows:
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4  (~,): O, O, O; ~, ½, O; O, O, ½; ½, ~, ’A;
8c0 ): x, y, z; yc, y, z; y, y, g

.F_, y, lh+z; x, y,, lh+z; y,x,z,, y,x,z
Thus the unit cell contains 12 C atoms.
By inspection, one can find the following symmetry elements in the unit cell.
1) 7fvertical rotoinversion axes: with fixed point at C(a) atoms;
2) 42 vertical screw axes: through the midpoints of horizontal edges;
3) 21horizontal screw axes: parallel to edges, at the one fourth and three-fourths of
the horizontal edges, at elevation 0 and ~;
4) 2 horizontal rotation axes: parallel to horizontal face diagonals and between
them at elevation 1/4 and 3/4;
5) n horizontal glide planes: at elevation 1/4 and 3/4;
6) c vertical glide planes: coinciding with vertical cell walls as well as halfway
between them;
7) m vertical mirror planes: perpendicular to horizontal face diagonals at one
fourth and three-fourths of them;
8) 21 horizontal screw axes: parallel to face diagonals, over midpoints of horizontal
edges, at elevation 1/4 and 3/4;
9) n vertical glide planes: through horizontal face diagonals;
10) ~" inversion centres: in the centre of 1/8 cells.
Thus the space group is:

D164h (Schoenfiies symbol) or
P4/ncm (international symbol) or
P~n-z ~ ~m---~omplete Mauguin symbol).

The corresponding space group diagram is given in Figure 5. (We note that the list
of symmetry elements, the diagram in Figure 5 and the space group pairwise deter-
mine each other taking into account the standard interpretation of the symbols
especially that given in the International Tables (Buerger, 1971). Although these
are well known for crystallographers, here we risked the redundancy in order to
make our contribution self-contained.)
Accordingly, the point group of pentamond is D4h - 4/mmm (the crystal class is a
tetragonal holohedry).



glgu~ 5: Space group diagram of pentamond.

A three-dimensional view of the unR cell of pentamond is shown in Figure 6. It is
drawn in accordance with the numerical values given to the parameters a, c, x; y and
z in the next section. It is seen that the six-membered rings are not completely
’eliminated’ from the structure. In fact, each C6 ring is linked by its opposite edges
to a next one, forming infinite ribbons of width c/2. The orientation of these rib-
bons is (110) and (110) (cf. upper half and lower half of the unit cell, respectively).
Two perpendicularly oriented ribbons are joined by a common carbon atom shared
by an upper and a lower C6 ring.

4. TENTATIVE CALCULATIONS

One can easily observe in Figure 2 that there are three distinct types of bonds
between the two types of carbon atoms: a-/~,/3-/3 and//-B’ (a prime denotes C~)
type atom located in an adjacent layer). The number of combinatorially possible
bond angles on an atom of valence four is six, which is reduced by the local symme-
try on the atom in question.
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Figure 6: The tctragonal unit cell o[ pcntamond, with coordinates ofa C(fl) atom indicated.

Now observe that on the C(a) atoms the original local symmetry reduces according
to the scheme: 43m -~ 42m (or Ta.,,~D2d in Schoenflies notation). Hence, we have
the following two types of angles here:

~(fla~, ,n’): it is projected into a straight angle on the (001) plane;

*0~, ~r/2):Fig. 2).
it is projected into a right angle on the (001) plane; (cf.

On the C(fl) atoms, at the outset, we can only assume the local symmetry Cs-m
which is part of the global symmetry. Accordingly, we have the following angles:

,I,(o¢.),
where the last two occur twice owing to the presence of the mirror plane m.
Our approach is based on the assumption that the well-known carbon-carbon
sigma bond length remains unchanged throughout the structure of pentamond. On
the other hand, the bond angles listed above are allowed to deviate from the ideal
tetrahedral value. It turns out that the conditions



At) ~onstant bond length

A2) the given local and global symmetry

only allow one fre~ parameter for the structure calculation (global point group
D 4h - 4 /mmm ).
The starting point is the angle ~(~a), where the deviation from the ideal arccos
(-1/3)ffi109° 28’ value is measured by a ~ parameter. With this starting angle, some
calculations yield the following formulas.

cos4,(~,~r) ffi ½+2~’-4~e

cos~(~,~’/2) ffi -3/4-8’+2~

where ~’= {2/3-~)W.

O)
(2)
(3)
(4)

0e

0.19

0.30

V(~’)

-69

Figure 7: The dependence of angle distortions (left ordinate axis) and unit cell volume (right ordinate
axis) on the ~ parameter.
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Using the formulas (2-4), the functions 6 -~ I A I, where A = q~ - arc cos (- 1/3),
are plotted in Figure 7. The intersection points of curves (~Sa) and (fl/3/3’) may be
considered as that representing an optimum of the structure (within the limits of
our approach). The corresponding value, 6 = 0.1911, was determined by Newton’s
method taking the difference of the two functions.
For this ’optimal’ structure, the cell dimensions can be obtained using the following
formulas:

a = 2.2½4.8’ (5)
C ---- 2/({3+z1~’-8~’2}½+2{8’-~’2}½), (6)

where I is the C-C sigma bond length. Its actual value, 1 = 1.5445 A, is calculated
from the lattice parameter of diamond (a=3.5668 [ (Zoltai and Stout, 1984)),
assuming the carbon atoms to be hard non-overlapping spheres with radius r=l/2.
Hence, the cell dimensions are:

a -- 3.3014 ~, c = 6.3795 g (7)
Expressing the C(fl) coordinates used in the preceding section in these units one
obtains:

x=0.3346,    y=0.1654,    z=0.1460. (8)
(We note that these numerical values have been applied in Fig. 6.)
The bond angle values are obtained partly by formulas (1-4). Those for which no
explicit formula is given are calculated from the coordinates (8). The results are
summarized in Table 1.

Results of bond angle calculation in pentamond at 8= 0.1911

Symbol of angle ¯ A

(a~a) 98* 11’ - 11" 17’
(flail,w) 105" 51’ - 3* 37’
(fl~,~r/2) 111° 19’ 1" 51’
(fl/3fl’) 120° 45’ 11° 17’
(~fl) 1~0 49’ -   39’
(~fl’) 112" 47’ 3" 19’

Equality of the last two numerical values (o43/3 and aflfl’) in this Table would mean
a C2v-mm2 local symmetry on the C(fl) atoms. Since they differ, the originally
assumed symmetry does occur (viz. Cs-m).



It is seen that the angle strains are relatively small, except for the case of _+11° 17’.
Unfortunately these latter cannot be simultaneously reduced, as we saw just now
(cf. Fig. 7). Here we have to suppose that the structure will tolerate this amount of
strain. The unit cell volume has also been calculated as follows:

(9)
Its dependence on the 8 parameter is shown in Figure 7. It has a maximum in the
vicinity of our optimum point. At this optimum, its value is V -- 69.551 ~3.

We compare the packing efficiency in the structure of pentamond and diamond.
This number is usually given as the percentage of the volume occupied by (hard
spheres of) atoms in the unit cell. It is well known and is easily checked that in the
diamond structure it is equal to (q~’~-/16) x 100% = 34.01%. The ratio of packing
efficiencies in the two structures can be obtained by the quotient

(10)

where Vp, VD and Zp, ZD are the unit cell volume and the number of atoms in the
unit cell of the two structures, respectively (note that this ratio can be considered as
the reciprocal ratio of molar volumes as well). By appropriate substitution we
obtain: q(P/D) = 0.9786. Hence, the packing efficiency in pentamond is 33.28%,
that is, a bit ’worse’ in comparison with diamond.

If q(P/D) were greater than one, it would provide the theoretical possibility of
preparing pentamond by some high-pressure technique. Our model, based on the
assumptions A1 and A2, does not feed such hopes. However, as we shall see at
once, the situation is not quite hopeless.

5. CONCLUSIONS
It is to be emphasized that our approximation is merely a first approximation and
one of the simplest possible. Indeed, the assumptions A1 and A2 are relatively
strict. They can be relaxed, both separately and jointly. Of course, this can be done
at the expense of an increased number of free parameters. A simultaneous treat-
ment of more than one degree of freedom requires finer methods which would be
the object of subsequent contribution(s).

Such ’structure refinement’ will possibly result in a more efficient packing of C
atoms (while preserving the topology established in the present paper). A physical
consequence of this would be the location of the region of existence in a high-pres-
sure part of thep-T phase diagram of carbon. At the moment, this is an interesting
and quite open problem both geometrically and physically.

Of course, the problem of locating the region of existence is preceded by the prob-
lem of the possibility of existence. This refers not only to the natural occurrence of
pentamond but to its technical realizability as well.

Here a disturbing factor may be the amount of angle strain (in particular that origi-
nating from ~(o#~a) and ~(j3flfl’)). However, we expect that refined (hence more



PENTAMOND 81

realistic) structure models would exhibit a more tolerable amount of strain (on the
other hand, if carbon atoms are inclined to build up such a structure at all, they
would find the true optimum automatically).
Since carbon atoms obviously do not overexert themselves to organize into penta-
mond structure spontaneously (otherwise pentamond would be a well known min-
eral such as diamond and graphite), here we refer to a relatively recent level (at
least in our terrestrial environment) of the evolution of matter: this is the
’controlled evolution’ or technological stage. Well, here is a challenge to materials
scientists, solid state chemists and/or other experts on modern synthetic methods
such as of catalytic vapour deposition, laser fusion and so on.
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