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SYMMETRY CHANGES BY CELL~ AUTOMATA IN
TRANSFORMATIONS OF CLOSED DOUBLE-

THREADS AND CELLULAR TUBES WITH M~)BIUS-
BAND, TORUS, TUBE-KNOT, AND KLEIN-BOTI’LE

TOPOLOGIES
Szaniszl6 B6rczi

Abstract: The definition and classification of double-frieze structures in ornamental
art from archaeology (lk~czi, 1985, 198(~ 1989), and the introduction of symmetry
operations as local type, cellular automatic operations (B~rczi, 1985, 1987, 1989)
opened the possibility of using these concepts in the crystallography of different surface-
mosaic structures.

The first application of these concepts was in the transformations of the double-thread
cellular M6bius-band to torus. This transformation preserves the half of the double
thread in the form of cellular bana~ but rearranges its neighbourhood in the direction
perpendicular to the direction of the cellular band- This transformation - from
M6bius-band to torus, to and back - rearranges the pattern of the double-thread sys-
tem and it is invariant to the knot-structure of tube-knots. Surface structure of Klein-
bottle built from M6bius-bands is also discussed.
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INTRODUCTION

To develop the topics of this paper it was necessary to unify the achievements in
three different directions of investigations. One direction was: symmetry as a local
(cellular automatic) operation (B~rczi, 1976, 1985, 1986, 1989). The second one
was: the recognition of the role of double-threads in ornamental constructions
(mainly in archaeological finds; B~rczi, 1986, 1989). The third one was the intuitive
rediscovery of the M0bius-band to torus transformation (B~rczi, 1990). Construc-
tion of a cellular automatic model to these developments formed a framework to
build together and summarise them in this paper.

SYMMETRY BY LOCAL OPERATION
The rich set of Avar-Onogurian ornamental structures (Fig. 3) in which there were
frequently double friezes, suggested to the author, that for the classification of
these double friezes a new meaning of the classical symmetry concept should be
needed. The classical symmetry concept used global-local connections: symmetry
was the order of the ordered whole on its repeating, congruent elements
(represented by symmetry operations). The symmetry concept connected with
Avar-Onogurian structures modified the role of operations. Double friezes
required a local and one-step generator type operation concept. (We may call it
technological symmetry concept or cellular automatic operation concept because of
its step-by-step effect in structure building.) This symmetry concept was a local one,
which recognlsed the global order (the cells were conscious of the global order),
but considered operations as generators of the ’state’ of the neighbourhood.

OPERATIONS

translation with unit distance - t

,@lide reflectlon w. unit dist. - g
mirror reflection w. unit dist.- m

half turn with unit distance - 2

Figure 1: Combinatorical construction of the four congruencies which work as operations to generate
the neighbour pattern in order to build a line in the plane. A combination of the three last of them
results in a fifth one: mg. These five line-patterns form a s~t of basic frieze patterns(t,g, m, 2, mg).
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THE FIVE BASIC FRIEZE PATTERNS

~7 ~7 ~7 ~7

~7 ~7 ~7 ~7

Figure 2: The matrix of the 20 double frieze patterns (B~rczi 1986, 1989.) The matrix is organized
(woven) from the five basic frieze patterns: t, g, m, 2, and mg. doubled by the four simple frieze generat-
ing operations: t,8, m, 2, applied as local operations. Avar-Onogurian representatives are shown in Fig-

ure 3. Celtic representatives are shown in Figure 4.







There are four simple congruency operations which may generate different frieze
patterns (with unit width) along the line (embedded into the plane). They are the
following ones: translation, mirror reflection, glide reflection and half turn (Fig. 1).
The basic frieze patterns are those which were generated by these congruency oper-
ations plus one more frieze: that which was their combination: rag. The doubling of
them needs a local generator of the neighbourhood thread from the given frieze
pattern. This operation can be carried out by the four line-generator simple con-
gruencies (Fig. 1). Local congruency operations determine the neighbourhood
positions of a repeating element in a net of perpendicular and horizontal rows of
the patterns of the matrix in Figure 2.

CELL~ AUTOMATIC FRAMEWORK
The cellular automaton model has a characteristic framework of description. It is
composed from two parts of conditions. The first one gives the structure of the cel-
lular background, the second one gives the transitional functions. Both parts of con-
ditions form a pair of approach: a local and a global one, as follows:

A. CELLULAR BACKGROUND
(Aa) Local characteristics of the cell-mosaic system give the form of cells, their
connections and neighbourhood relations.
(Ab) Global characteristics of the cell-mosaic system give the surface and the enclo-
sure of the local relations to form a whole.

B. TRANSITIONAL FUNCTIONS
(Ba) Local transitional function for cell mosaic elements which are individual
automata (discrete function in space and time, step by step transforming cell-
states).
(Bb) Global transitional function for the whole surface populated by the cell.
mosaic system (it forms a sequence of stages of the surface taken step by step, as a
consequence of summarised - for all cells - local transitional functions).
Although the points a and b are not independent of each other, the advantages of
the cellular automaton model come from this separability of local and global pic-
ture: both for conditions and operations, and from the expressed connections
between the local and global characteristics of the phenomenon.

THE INDIRECT WAY OF CONSTRUCTION OF CELLULAR
AUTOMATON MODEL: THE INDIRECT VON-NEUMANN
PROBLEM

The classical way of the development of a cellular automaton model was the con-
struction of Aa and Ab background and the Ba local transitional function, at first.
Then followed the deduction of the global transitional function Bb, which hold the
primary goal of the construction. We may call this way of model construction to the
direct way. (The principal aim of yon Neumann’s cellular automaton construction



"~ lWa!SS~l~ ~ u! molqo~d Otll ~oqs o~ luotudo
-lo^op lopom uo~mom~ a~InllOa oIojoq ~n8 "0oqlo~ol s~a~d oni~ ~oJ-~I ’suo!lom

ioJ-!-]’mo ~OJ-A) ~I -V-~- A :S~OllO~ s~ tuoq~ loqu~s o1 oanpo~u! OA~
so~g~s ooaq~ pu~ sdo~s o~ s~t uo!lounj i~uoD!su~n l~qOlff Otll aod~d ~uoaow otI~ uI

¯SO^lOsmoql SlIOO oql
~oj uo!l~unj IgUO!l!sugn lWaOl og oql l~nnsuoa o~ ,~llUUg pug :mol~s ~!gsom-IlOO
Otll ~Io suo!lgtu~o~Isu~l ~IO sdo~s oloJas!p ~Io so~ls ~Io oauonbos ~z s~ uo!lounj IgUO!l
-!sug~l IgqOlg qfir Olglntua0j o~ qV pug t,p’Jo slu!od jo uo!1gu!tu~olop Otll Xq puno~
-~logq otO ~u!qo~o~ls ~oW¢ "(996~ ’uurtunoN uo^) uo!~onnsuoa Jo uo!~ao~!p s,uugtu
-non uo^ jo ~oodso~ u! Xgs ~oo~!pu! oq~ sT. ~odrd s!ql u! uo!~onnsuoa jo Xg~ ~nO

(’suo!!
-aunj l~UO!l!su~n l~qOl~ jo 1o^oi oql uo oanlanals ~u!anpoadoa-jlOS ~ pl!nq ol



CRYSTALLOGRAPHY OF THE M~)BIUS-BAND
It is well known that M6bius band can be constructed from a finite long, unit wide
band (belt) in the following way. Cut this normal band (belt) perpendicular to its
edges and attach the two ends after a half turn rotation of one of its end around the
middle axis of the band. This half turn transforms normal beltband to MObius-
band. Let us assume that the belt band was adorned with a frieze pattern. What
kind of frieze patterns may remain invariant after the transformation shown ear-
tier?
It is important to notice, that the band is built up by transparent pattern of the
cells, what means: that both sides of a cell are shown with the same pattern figure.
During the given normal-belt to M0bius-band-belt transformation, half turn acts as
if it were a glide reflection for the neighbouring cells at attachment position. As a
consequence of the construction of the M6bius-band from a normal belt-band we
can conclude, that frieze patterns should have glide reflection generator in order to
they should be fitted onto the M0bius-band. This is a local condition for the cells.
But there is a global condition, too. It is a number condition. Normal belt-band
should have a pair number of cells in order to fit its pattern with glide reflection.
The transformation procedure (cutting and attachment) shown earlier to construct
M0bius-band from a normal-belt-band needs the elimination of one cell at the
position of attachment after half turn, because the operation referred destroys the
order there: after half turn there will be two cells with the same (i.e., only transla-
tional) position, so lacking the needed glide reflection for these two neighbours. To
correct this failure of the order of the pattern we have to ’cut out’ one of these two
cells, during an in sire production of the transformation described. Therefore the
global condition for the number of cells in a belt with M6bius-band structure is the
following: M0bius-band should contain odd number of cells with g (glide reflection
type) generators. Considering the case of mg structure, too, we may conclude that
not the number of cells, but the number of units suitable for glide rcfiection (now
pairs of cells) should have the number odd, on a M6bius-band. Of the double-frieze
and basic frieze patterns given in Figure 2, those which are suitable to fit onto a
M0bius-band are given with black colour in Figure 5. (The transformations of these
nine double frieze patterns in the further parts of our paper will be always given in
the matrix of double frieze patterns, first given in Figure 2.)

THE MOBIUS-BAND TO TORUS TRANSFORMATION
As we mentioned in advance, the M0bius-band - to - torus transformation con-
sists of three steps: V -Fi~l - R. Instead of classic description we give these steps as
a global transitional function.
(Bb-1) Cut the MObius-band at middle between its edges, along its circle. Colouring
of half-band helped to see this operation in Figure 6. (comment: this cutting sepa-
rates the two half bands locally, but does not do it globally: the L-long MObius-
band becomes a 2L-long one, 4 times half-turn-twisted belt band.)
(Bb-2) Move the opposite sections (cells) of the 2L-long, twisted band, so, that
coloured sides be the outer surface, and the two edges of the opposite sections
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(cells) may be attached. (Comment: this operation may be substituted in a way as
follows: do not remove far the cut half-bands (with unit width) from each other, but
instead of it, slide one of the half bands behind the other, and so form the position
to contact opposite edges of the slidden cells.)

(Bb-3) Attach and glue the contacting edges. (Comment: two gluing lines are
resulted in locally; the two opposite edges of any cells, but globally only one glued
line run around the torus. This glued single line globally turns ~- in cross section
circumference of the toms when it run 2~- along the great circumference. The full
length of this single line is 4,n’:2~r - small:great circumferences. This is the charac-
teristics to be generalized when used for tube-knots in the inverse transformations:
torus (or tube-knot)-to-M0bius-band.)

GLOBAL TRANSITIONAL FUNCTION LOCAL TRANSITIONAL FUNCTION

Bb-l. Ba-l.

cutting
at middle
line

Ba-2.

Bb-3. Ba-3.

sliding
one of
half-bands
behind
the other

gluing the
opposite
edges of
contacted
cells

Figure 6: The global (left column) and the local (right column) transitional function in the cellular auto-
matic formulation of the M6bius-band -- to -- torus transformation.

Figure 6 summarizes visually these steps both for the global and the local transi-
tional functions. The program of our paper is to formulate the indirect problem: to
transcript the global transitional function to the local transitional function. The



steps in the local transitional function can be easily followed according to the 
movements given for Bb-2 in comment. This is the Ba function: 

(Ba-1) Contacts along band direction are preserved, separation in the perpendicu- 
lar direction is executed between neighbouring cells. 

(Ba-2) 'Sliding behind' one half band (cell-ribbon) to the other. 

(Ba-3) Contact and glue the free, opposite cell edges. The twolayered - glued - 
structure should be blown up to form a torus. This blown up tube exhibits the 
plane-symmetry pattern according to the neighbourhood relations between the 
cells in it (Fig. 7). (Gluing results in a kind of Born-Karman boundary condition for 
the cellular bands regarding their patterns.) 

Figure 7: Transformations of Mobius-band -to -torus rearrange the pattern of the surface. These rear- 
rangements are summarized in the double frieze. matrix projected to the corresponding 'woven' plane- 
symmetry pattern matrix. The process how the transformation rearranges the pattern is shown form-m 

double frieze pattern in figure 8. The inverse rearrangements are referred in Figure 9. 
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Ba-2.
Bb-2.

Ba-3.
Bb-3.

Figure g: Unification in a single sequence of sketches of the global and local transitional functions of the
three steps (given earlier in Fig. 6) in the M6bius-band --to --torus transformation for the case ofm-m

double frieze on M6bius-band -- towards thepm plane-symmetry structure on torus (or t-m double
frieze pattern, if projected). Cells of the local model are represented by their abstract figure of triangles.
The critical step of Ba-2 and Bb-2 shows how the sliding of one of the half bands behind the other forms

pm structure after the third step from m-m frieze structure.



SURFACE PATTERNS /IN THEIR DOUBLE FRIEZE REPRESENTATIONS/ OF THE
TORUS /OR TUBE-KNOTS/ SUITABLE TO THE INVERSE TRANSFORMATION

Figure 9: The initial surface patterns (given with their skinned and smoothed double frieze forms) on the
torns (or on the tube-knots) suitable to the inverse M6bins-band -- to -- torns transformation. All these
transformations and initial patterns are valid for tubeknots which fulfil the conditions given in theBb-3

point of global transitional function. Two cases for the simple knot are shown in the right column.

THE TORUS- (OR TUBE-KNOT-) -TO-MOBIUS-BAND
TRANSFORMATION

In the inverse (or reverse) of the M0bius-band - to - torus transformation (i.e., in
the torus-to-M0bius-band transformation) the surface cell-mosaic patterns given
in the lower matrix of Figure 7 are the initial conditions. These patterns are those
which may form a correct double frieze pattern on the M0bius-band after the in-
verse M~bius-band- to - torus transformation.
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Figure t0: Idealized drawing of a tube-knot with C5 rotational global symmetry withp2 type surface pat-
tern (or 2-2 corresponding double frieze pattern), on its surface which suitable to the inverse M6bius-

band --to--tot-us transformation. This transformation forms g-2 double frieze structure on the surface of
the M6bius-band-knot. Compare it to the simple tube knots of Figure 9.

The group structure of a knot can be understood easily, when we consider the knot
as a representation of a frieze pattern woven from a strand, wound up around a
central point. Here on Figure 11 the two most simple knots are shown with their
corresponding frieze patterns.
A (top) The simple knot is the representation of the frieze pattern of 2 (half turn
generated) wound up around a point: radius vector crosses two strands at once, but
globally one strand runs around two times, according to the suitable alternation of
the 2 (half turn) frieze pattern. The 12 (twelve) repeating elements (corresponded
to sections between strand-crossings) of the corresponded frieze pattern prove that
they may not be commensurable with odd number of cell units of the double-frieze
pattern of the tube-knot with this knot-structure, if tube-knot is parcelled to cells
according to a double frieze pattern suitable to be transformed by inverse MObius-
band-to- (tube-knot) -torus transformation.
B (bottom) The knot with C4 rotational global symmetry (carrick band coaster) is
the shortest frieze pattern representation of g (glide reflection) type structure
wound up around a point: radius vector crosses three strands at once, but globally
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one strand runs three times, according to the alternation in the woven g frieze pat-
tern (coloured with three tones). The 24 repeating elements (corresponded to see-
tions between strand crossings) of the corresponded frieze pattern prove, that the
frieze pattern of the knot structure may not be commensurable with the structure
of the double frieze pattern of the tube-knot with such structure, if its parcelling to
cells happened so that the double frieze pattern was suitable to have been trans-
formed by inverse M0bius-band-to-(tube-knot)-torus transformation. Both
examples shown on Figure 11 intuitively prove that structural hierarchy of tube
knots contains hierarchy levels independent of each other.

A The knot in stretched form

Two color frieze pattern representation of 2 frieze pattern

A

-

I

Three color frieze pattern representation of g frieze pattern

¥1gure 11: Wound up frieze pattern representation of the woven structure of the two most simple knot-
structures.A Simple knot with C3 global rotational symmetry and wound up 2 (half turn) frieze pattern
structure around a point when considered its structure locally between strand-crossings. B Knot with C4rotational symmetry (global one) and wound up g frieze pattern structure around a point when consid-
ered its structure locally, between strand-crossings. Global and local structure is incommensurable in

respect of the inverse M6bins-band --to--(tube-knot)- toms transformation if strand is a tube.
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CONSTRUCTION OF KLEIN-BOTI’LE BY DOUBLING M~BIUS-
BANDS

them at their edges one by the other in mirror
symmetric position result in known topological
surfaces: the Klein-bottle (see Fig. 12). Doubling
consists of two parts. First one is the doubling of
M0bius-band cellular background by a mirror
reflection. Second one is the doubling of the suitable
patterns: this may be carried out according to four
operations shown in Fig. 2 (by t, g, m, and 2 by-
generators). In this operation pairs of cells work as
generators.
On the other hand, doubling of the pattern may be
accomplished in two variants. In the case of normal
doubling pattern of the doubled pair is in phase with
the initial one. A modification of this normal case is
that doubling may not be not-in-phase. In the case of
doubled t, g, m, and 2 lines there is one (for mg three)
possibility to slide doubled pattern one cell unit. This
variation results in new doubled MObius patterns on
the Klein-bottle, (see Fig. 15).

Figure 12: Construction of Klein-bottle by
mirror reflection o[ a M6bitts-band.

SUMMARY AND CONCLUSIONS
Different ways of pattern generations from a single, ~(~
constructed, basic frieze pattern were constructed and
analysed in this paper. After the constructive ~.o,.
definition (in combinatorical way) of basic frieze ~
patterns, first the double frieze patterns were ~
generated by a neighbour-state generator local
operation. Then those double friezes were selected
from the double frieze matrix, which are suitable to fit them onto M6bius-band.
The most important and interesting results shown in this paper were the cellular
automatic description of the M6bius-band-to-torus transformation and the
implicated pattern rearrangements in the double frieze patterns constructing them.
These results may have importance in description and modelling of
transformations and reproductions of molecular double-threads (especially that of
viruses).
Different developments of the construction by local doubling operations were
shown. It was shown for tube-knots, that their knot-hierarchy level is independent
of the surface cell-mosaic structure of the tube, and the group structure of the knot
is incommensurable with the numerosity of the cell-mosaic pattern of the tube,
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when it is suitable to the inverse M0bius-band-to-(tube-knot)-torus
transformation. Finally, further constructions from M0bius-bands with double
frieze cell-mosaic patterns were shown to build Klein-bottle from them. There were
used also a local doubling operation to repeat the structure of the initial MObius-
band. It was sketched how can be constructed new Klein-bottle surface patterns
from M0bius-band double friezes by t, g, m, and 2 doubling, and in-phase and not-
in-phase cases were also shown to enrich the number of pattern variations.

Figure 13: Doubled double frieze patterns on M6bins-bands form patterns on the Klein-bottle which
may be produced by gluing a pair of M6bius-bands in a mirror symmetric position. The two examples
show the initial and the final situation for such operations, accomplished according to the deformation

sequence sketched in Figure 12.





66 $. BI~,RCZI

All the constructions shown in our paper are independent of structural hierarchy
level in the evolution of matter. Therefore phenomena which can be modelled
using up such constructional or transformation processes may be found on
different levels of structural hierarchy. But mainly molecular level of structural
formation is the hierarchy level in focus, when these transformations are discussed.
On this level it is an important conclusion from our paper, that M0bius-band
structures are very rarely observed, because of the strong criterion of g symmetry
operation which is necessary condition for the existence of M0bius-band double
thread structure. But g operation contains reflection, which is not a motion, so
molecular enantiomorphy should be used up in such constructions. Alternating
selection of enantiomorphous molecules seems almost impossible process in
nature. Only small number of elements long M0bius-band structures may be
expected or may be hoped to be found in natural circumstances. But the possibility
of constructing them is open. Construction of molecular double thread structures
with M0bius-band global structure is a challenge to chemists and may open a new
field in chemistry. On the other hand it may be interesting field for theoretical
calculations (with small number of elements) for quantum chemistry, too. All these
’predictions’ are valid for structures with both M0bius-band structure and with a
knot superstructure, too, but it seems a far future program.

IN-PHASE NOT -IN-PHASE

Flgur~ 15: In-phase and not-in-phase doubling of the 2-m pattern of the initial M6bius-band (left part of
each pairs in the figure). In-phaso doubling results in cram pattern (left double-M6bius-band), not-in-
phase doubling results inpmg pattern (right double-M6bius-band) according to local neighbourhood
relations of cells (with the triangle pattern element) in the final pattern of the Klein-bottle. The local

structure can be observed when the patterns were stretched onto the plane; the global structure can be
expressed, when the earlier pattern were given with the so called Born-Karman boundary conditions,

which represent the feedback of the structure on itself, when it were closed.
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