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Abstract· The article describes a method for
geometrically constnlcting hyperbolic
tessellations in the Poincare disk with the
aid of ruler, compasses, and protractor
followed by techniques for transforming
these tessellations into "Escher-type" patterns. It begins with a brief discussion of
hyperbolic geometry and regular tessellations of the Euclidean plane. The concept of
tessellation is then extended to Poincare's disk and a detailed description of the
tessellation by hyperbolic squares meeting sir at a vertex is given.

INTRODUCTION

The Dutch artist M. C. Escher (1898-1972) was perhaps the first to use hyperbolic
geometry to create art. His inspiration came from a tessellation that was illustrated
in a paper written by H. S. M. Coxeter in 1957. Below are Coxeter's Illustration and
Escher's woodcut, Circle LimitW, (Baal et aI. 1981, p. 322).
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(a) TIle Coxeter Illustration

(b) Escher's Circle Limit IV
Figure 1
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These figures raise two questions:
1. How does one geometrically construct such a tessellation with the aid of ruler,
compasses, and protractor?
2. How does one utilize the tessellation to create an artistic design?
Both of these questions are investigated in this paper.

THE POINCARE DISK

In the late 19th century, a model for hyperbolic geometry was developed by Henri
Poincar6 (1854-1912). Now known as the Poincar6 disk, the model can be defined
as consisting of all the points in the plane that lie inside a bounding circle C, with
geometric concepts defined in the following manner:

Hiperbolic point. Any point interior to C.

Hyperbolic line. Any diameter of C or the portion of any circle that lies inside C and
is perpendicular to it.

Hyperbolic angle. An angle between two hyperbolic lines is the Euclidean angle
between the circles that represent them.

Hyperbolic triangle. A closed three sided figure formed by three hyperbolic line
segments.

(a) Hyperbolic lines
Figure 2

(b) A hyperbolic triangle

Hyperbolic geometry is a logical and self-consistent world but its geometry is
different from the Euclidean geometry of our everyday experience so we can only
hope to illustrate the hyperbolic plane and its geometry in a distorted fashion.
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Imagine that the Poincare disk is a shallow circular pool of radius ten meters that is
filled with water and contains one lone inhabitant, a hyperbolic goldfish. As the
goldfish swims around the pool, he remains the same hyperbolic size but because
the Poincare model distorts length to our 'Euclidean eyes', the goldfish appears to
us to change size.

Specifically, if the goldfish has a Euclidean length of one meter when it is in the
center of the pool then it will have Euclidean length equal to (1-r2/100) meters
when it is r meters from the center. Hence, the distortion in the model makes the
goldfish appear to shrink as it swims towards the boundary. So, hyperbolic length is
distorted but equal hyperbolic angles are surprisingly represented by equal angles
in the model so that for instance an angle of 45° in the model represents an angle of
45° in hyperbolic reality.

TESSELLATIONS

A regular tessellation or tiling of the plane is a covering; without gaps or overlaps,
of the plane by congruent copies of a regular polygon. A regular tiling is descibed
by two positive integers, [p, q], where p is the number of sides on the tiling regular
polygon and q is the number of these polygons that meet at a vertex. In the
Euclidean plane, since the vertex angle of a regularp-sided polygon is equal to 180°
- 360°/p and q polygons meet at a vertex, we have

or equivalently

(p - 2)(q - 2) = 4.
This leads us to the three familiar regular tessellations of the Euclidean plane.

(a) [3,6] (b) [4,4]
Figure 3

(c)[6,3]
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Now, we consider regular tessellations of the Poincare disk in an analogous
manner. Since the angles of a hyperbolic triangle add up to something less than
180°, the vertex angle of a regularp-sided polygon is equal to less than 180° - 360°/p
and since q polygons meet at a vertex, we have

q(180° - 3600 /P) > 360°

(a) [5,4), Pentagons

(b) [7,3], Septagons
Figure 4
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Thus the regular hyperbolic tessellation, [p, q], must satisfy

(p - 2)(q - 2) > 4
First, we notice that there are infinitely many possibilities for p and q. Two
examples of hyperbolic tessellations are shown below. One tessellation is by
pentagons meeting four at a vertex and the other is by septagons meeting three at a
vertex.

In fact, for a given p, there are infinitely many potential values for q. In order to
make our eventual construction of tessellations simpler, all of the regular
hyperbolic tcssellations that we consider will contain a centered regular p-sided
polygon, that is, one polygon will lie directly in the Euclidean center of the
Poincare disk.

Consider the case where Ii = 4. These arc tessellations by hyperbolic squares. There
is one tcssellation for each q where 4 < q 00. As q increases, the centered regular
square for the tessellation [4, q] grows out towards the bounding circle C, and at
the same time, the angles of the centered square decrease toward zero.

The case where q = 00 is a special case because the vertices of the centered square
as well as the vertices of all the squares in the tessellation lie on the bounding
circle. It is included because it is an appealing tessellation and relatively easy to
construct.

Some examples of centered squares are shown below.

Inside to out, q = 5,6,8, 00 with angle 72", 60", 45", 0" respectively
Figure 5: Concentric regular squares

These centered squares are pivotal to the four tessallations shown below.
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(a) [4,5]

(c)[4,8]

Figure 6

(b)[4,6]

(d)[4,00]

Note that the edges for the tessellation [4, 5] (Figure 6a) do not extend to the
boundary of C because q =5 is odd.
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A GEOMETRIC METHOD FOR CONSTRUCTINGA
TESSELLATION

The first step in constructing the hyperbolic tessellation [p, q] is to construct the
centered p-sided polygon inside the bounding circle C. Assume that the bounding
circle C is the circle of radius 1 centered at the origin of the Euclidean plane.

Let (s, 0) be the vertex of the centered polygon which lies on the positivex-axis.

To construct the hyperbolic line segment in the 1st quadrant which forms a side of
the centered polygon joined to (s, 0), we must find the center and radius of the
circle which represents this hyperbolic line segment.

Sinee the center of this circle lies on the line y =xtan(7T!p) , let the center equal (h,
htan(7T/p) and let r equal the radius ofthe circle (Figure 7).

(0,0)

Figure 7

Since a vertex angle of the centered polygon is 27T!q, calculus and algebra yield the
following equations involving s, It, and r.

s=
1· tan(1Tlj»tan('7T/q)

1 + tan(1T/p)tan(1T/q)

s
11=

1- tan(1Tlj»tan(1T/q)

r =Vh2sec2(1Tlj» - 1
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To iIlustate this geometric method, the tessellation [4, 6] is constructed. This is a
tessellation by squares where six squares meet at a vertex. The first step involves
constructing the centered hyperbolic square. Substitutingp = 4 and q = 6 into tbe
equations above shows,

Simplifying,
s == 0.518 3+.J3 Ir - 3-.J3 r= 2

r=·hh'l.-l

The three remaining centers involving the centered hyperbolic square are found
using symmetry. Inside the bounding circle C, the four hyperbolic lines are
constructed to form the centered hyperbolic square. Outside the bounding circle C,
the four centers are connected to form a Euclidean square. The diagonals and
perpendicular bisectors for the outer square are constructed. This divides the
centered square into eight congruent right triangles. This triangulation will be
carried out on alI the squares in the tiling to aid in the construction. These
additional hyperbolic lines will be represented by dashed arcs while the edges of the
squares are represented by solid arcs. (Figure 8)

Figure 8: 1st construction step, [4, 6]

We prepare for the remaining steps in the construction by listing three theorems
that will playa key role.

The Tangent Theorem. A tangent to a circle is perpendicular to the radius at the
point of tangency.
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Corollary to the Tangent Theorem. The center of a circle, whose arc forms a
hyperbolic line, lies outside the bounding circle, C.

The Collinear Center Theorem. If hyperbolic lines pass through the same point
inside the bounding circle C, then the centers of their respective circles in the
Euclidean plane are collinear.

(n) 2nd construction step, [4,6]

(b) 3rd construction step, [4, 6]
Figure 9
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.At each vertex of the centered square, there are three remaining circular arcs that
we need to construct. By the Collinear Center Theorem, we know that the centers
of these circles must lie on the line connecting the other centers associated to this
vertex. Since the angles between neighboring arcs are 30°, we can find the centers of
the arcs. Whenever two circular arcs intersect at a point where another circular arc
is known to pass, Connect their centers with a straight line segment (Figure 9).

We continue the construction outward from the center by repeating this step
(Figure 10). It is noted that care should be taken when making calculations of
distances in the construction since an error on an early step may be magnified into
a larger error on a subsequent step.

Figure 10: 4th construction step, [4,6]

On subsequent steps the tessellation moves out towards the bounding circle C and
the Euclidean frame containing the centers of the circles moves in closer to the
bounding circle. In Figure 11, most arcs have not been extended to the boundary to
make it easier to see the tessellating squares.

In general, the construction begins by choosing integers p and q for the tessellation
[P, q] that we wish to construct. After drawing the bounding circle C, usep and q to
determine the centers and radii of the circular arcs that form the sides of the
regular centeredp-sided polygon. This is accomplished by using the following facts:

(a)p determines lines through the origin on which the centers lie.

(b) q determines the vertex angles of the centeredp-sided polygon.

(c) the centers of the circular arcs form a regular Euclideanp-sided polygon outside
ofC. .
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Figure 11: 5th construction step, [4,6]

Note, the equations involving s, h, and r for finding the centered polygon, that were
stated earlier, will work for anyp and q.

Then the tessellation is constructed outward in the same manner as the tessellation
by hyperbolic squares described previously.

CREATING HYPERBOLIC ART

Once a tesselation has been constructed, it can be used as a starting point for
creating a hyperbolic design. As an example, we will use the hyperbolic tessellation,
[4, 6], that was constructed above. One technique for transforming a tessellation
into a pattern involves first changing the tessellation into a bhlckand white tiling.
This is a coloring of the tessellation in black and white so that some rotational
symmetry is preserved at the centers of the hyperbolic polygons and at the vertices
where the hyperbolic polygons come together. The black and white tiling, (Figure
12), has 1800 rotational symmetry at the centers of the hyperbolic squares and 600
rotational symmetry at the vertices where the squares come together.

The next step is to form the black or white regions into a new shape. Since each
white region is bounded by black regions and vice versa, by altering all the black
regions, the white regions will automatically change. In the tessellation above, if we
transform the black triangles into devils (Figure 13), we arrive at a ariation of
Escher's Circle Limit W (Figure 14). Actually, the tessellation, [4, 6] used in this.
pattern is dual to the tessellation, [6, 4], used in Escher's Circle Limit IV. The
choice in center for each tessellation is the major difference.
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Figure 12: Black and white tiling
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Figure 13: Triangles to devils

Figure 14: Angels and Devils

The distortion of the size and shape of the tiles in the Poincare' model masks
imperfections of sketching and this allows the aesthetic power of symmetry to shine
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through. To create other hyperbolic patterns, six black and white tilings for the
tessellation [4,6], containing rotational symmetry, are shown below (Figure 15).

(a) Black & White #2

(c) Black & White #3

(b) Black & White #3

(d) Black & White #4

(e) Black & White #5
Figure 15

(t) Black & White #6
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Another method for creating hyperbolic patterns involves using the tesellation as
an outline and sketching designs inside the tiles. As an example, we start with the
tessellation, [4,6] (Figure 16).

Figure 16: Tessellation [4, 6]

The word 'Zoo' is sketched in a tile (2 triangles) from the tessellation, [4,6] (Figure
17).

Figure 17: 'Zoo' Tile

This tile is then reflected around the tessellation, [4, 6], to create the hyperbolic
pattern, 'Butterflies and Flowers' (Figure 18), with the six-petalled flowers
appearing in between the butterflies.
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Figure 18: 'Butterflies & Flowers'

COMPUTER DESIGNS

In recent years, computer programs have been written to produce hyperbolic
designs. A program created by Dunham, Lindgren, and Witte (1981) generates the
designs by describing the symmetry transformations in terms of 3 by 3 real matrices.

Dedication. The author wishes to dedicate this article to the memory of his sister,
Thelma Marie Dubrieul, who was one of M. C. Escher's biggest fans.
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