
I"" ,

I

Tho of the
IntoHHltionnl for tho

Stud,' of Sytnrnotry

©OJ]WltOJ] [J@
CIDOlKru

Editors:
DtlfV<JS and OelnllS Nagy

Volume 3.f\lurnber 2. 1992

©
  ISIS-SYM

M
ETRY



168

FLEXING POLYHEDRA

Caspar Schwabe
Ars Geometrica, AHA Gallery

Spiegelgasse 14, 8001 Zurich, Switzerland

Flexing polyhedra are closed surfaces which are bordered by fixed,
even polygons that can articulate along the edges. Such polyhedra
permit of a deformation. Visualize a closed surface which is
composed of flat pieces of cardboard and held together with
adhesive tape along the edges. If the form of the polyhedron can
change without tearing the tape or bending the cardboard, then we
have a flexing polyhedron. The bellows of a camera, for example,
function only with soft material; hence they are not genuine
flexing polyhedra, being mathematically very impure.

In 1812 the well-known French mathematician Cauchy proved that
convex polyhedra, i.e. those curved outwards, are immobile. In a
generalisation of this principle, it was then postulated that
concave polyhedra, i.e. those curved inwards, are also rigid.
In 1897, however, a Belgian engineer named R. Bricard refuted this
assumption. He discovered mobile octahedra strips, although they
could not be completed as polyhedra because they showed some
overlapping. Nevertheless it was regarded as impossible to
construct a genuine flexing polyhedron.

Only in recent years did R. Connelly with his revolutionary 36-
sided polyhedron, succeed in modifying Bricard's model in such a
way as to produce the world I s first genuine flexing polyhedron.
This polyhedron was later modified by N.H. Kuiper and P. Deligne
to only 18 faces. To top this, in 1977, K. Steffen found his
famous flexing polyhedron with only 14 faces and 9 vertices. All
those flexing polyhedra are based on the model of Bricard and
their mobility is severely limited by parts which impede one
another. The mathematically pure flexing polyhedra discovered so
far have constant capacity. It is therefore generally assumed that
the volume of every possible flexing polyhedron remains constant
during flexure.

Primary examples of flexing polyhedra with a variable capacity
-although these are not mathematically pure examples- are W.
Blaschke's flexing octahedra and M. Goldberg's double pyramid,
resembling Siamese twins. More recent models, such as the diverse
infinitesimal flexing polyhedra of W. Wunderlich and the 16-sided
so called .Quadricorn designed in 1981 by myself, allow rather
more precise, effortless movements. The Quadricorn is the first
practically perfect flexing polyhedron with a mathematically pure
middle position and two flat boundary forms, i.e. its volume can
be reduced to zero. As stated, the movements of all these flexing
polyhedra with a variable capacity are not mathematically pure,
for when they are in motion, tiny deformations hardly measurable
and invisible to the naked eye will occur on the edges and
surfaces. But one day , someone may discover a mathematically pure
flexing polyhedron with a variable volume and thereby disprove the
assumed constancy of capacity -who can tell? .
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One question remains: What sort of shape would a mathematically
pure flexing polyhedron with a variable volume have?
Would it need to be symmetrical, or could it be of asymmetrical
shape, a ring shaped torus or something resembling a so-called
UFO? Might there be a space-filling flexing polyhedra? If so, this
could be a dynamic structure where a single flexing polyhedron
controls and determines the motion of all the adjacent flexing
polyhedra. I firmly believe that any such discovery would have an
enormous impact on physics.

You will find on the pages 213-221
flexing polyhedra illustrated above.
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