Symmetry: Culture and Science

SYMPOSIUM
Symmetry of Patterns

The Quarterly of the International Society for the Interdisciplinary Study of Symmetry (ISIS-Symmetry)

Editors:
György Darvas and Dánes Nagy

Volume 3, Number 1, 1992
Observe time and space manipulated in an astonishing new way in a computer performance and lecture. For the first time in Asia see a dynamic new visual/sound system combining Lumena, MusicBox and VanGo by the pioneer software artist, John Dunn (creator of the first graphic system for the PC.) This system was first seen in 1990 in the exhibition "Infinite Illusions" at the Smithsonian Institution in Washington, D. C. See and hear the work of its first users, Sonia Sheridan, founder of Generative Systems at the Art Institute of Chicago where Dunn initiated the graphic system; Jamy Sheridan, computer artist and John Dunn's music compositions.

Lumena is a pixel paint/video computer graphics program, MusicBox is an algorithmic sound system and VanGo is a character generated motion graphic system. It is with Lumena and VanGo that I have done most of my recent work. To understand VanGo - try to visualize a map with 64,000 dots, Each dot represents one tile. (Fig.1) A navigator puck allows for moving through the 64,000 tiles only a few of which are seen below.

Fig.1 Local map showing 6 tiles imaged and the cursor to the left. The left image A consisting of an upper and lower tile is under the tile map.
Now in your mind place a simple image made of ASCII characters in one set of two tiles. (Fig. 1) In the instant it takes - copy these tiles and place them in the third position to the right of the first tiles. Slightly alter these new right tiles, labelled B. (Fig. 2) At this point make "buttons" telling tiles A (the left tiles) to choose any of six options to change the foreground, background or character. The result will be a moving image of multiple patterns made symmetrically. When the motion stops there are still only two patterns. But at any point in the motion the new patterns can be captured and launched into their own tiles. The B tiles image (Fig. 3) is one example of A and C merged images. A new set of buttons can be made and thus a continual metamorphosis of pattern is possible.

Fig. 2 Right tiles B are a rapid alteration of left tiles A. (all originals are in color)

Fig. 3 Middle tiles C are a merger of A and B tiles by changing the CFB (Character, foreground, background)

The system described is a totally new way to move through space and time. More remarkable is that it is just one more step in Dunn's path to a marvelous new language or artificial intelligence.