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DRAWING REGULAR HEPTAGON (7) AND REGUAR NONAGON (9)
BY ORIGAMI (PAPER FOLDING)

Humiaki Huzita
INFN c/o Department of Physics, University of Padova
Via Marzolo 8, 1 - 35131, Padova, Italy
E-mail; HUZITA@PADOVA.INFN.IT

Regular heptagon and regular nonagon are good examples to show
the ability of paper folding, since both can not be made by Euclidean
(using ruler and compass). For the convenience starting with a square
diagram the concentric polygon are here demonstrated. As you see this
does not disturb the generality, Here is described only how to make them.
Why and the other possible ways are left to you as a quiz.

Heptagon.

1) Make two medians, vertical a and horizontal b. Get two points A and B
of coordinates (1/4, 1/2) and (5/8, 1/4) respectively, considering
rectangular system with (0, Q) at lower left comer and (1, 1) at upper right
corner. Now FOLD such that point A comes onto line a exactly and point B
comes onto line b exactly at the same time.
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2) The realisation is not unique but you will obtain three. The three
displace position of A on line a, say A, A" and A™ correspond to shoulder
height, hip height and foot ground respectively, -

Realization - 1II Realization III
I e
/
/
A 2 A -
g~ ‘%\4 AY ] K~
/ I>SB 1\.8
/ - -~ A”I
; ST, K5 S 4




— 33—

3) Considering the upper most position of line a in the square or (1/2, 1) is
the head top and the center or (1/2, 1/2) is the center of heptagon, the
completion is easily made.
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Nonagon

1) Make two medians and call- AB (vertical), DE (horizontal) and their
crossing (center C). Fold moving point D onto C and call the crease, line x. Fold
making point C a pivot and moving point D onto crease x. Call the new crease,
line vy.
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2) Fold moving point C onto line x and point D onto linc y at the same time
and call the crease line z.
Fold 3 Get the wanted apexes
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3) Call the new position of point C on line x, point' C' and call the crossing

of line x and line z, point F. Make a line through C and C' and an other through
C and F. On these lines and line y make points A], A2 and A3 equal amount of
ICAl from the center C. Fold along linc y obitain A4, A5 and Ag at new positions
of A2, Al and A. By the reflection at AB, obtain A7 and Ag. A, A1, A2, A3, A4, As,
Ag A7 and Ag arc apexes of the wanted regular nonagon.



PERIODICAL OR QUASI-PERIODICAL 2-D PATTERNS CONSTRUCTED BY
REGULAR ODD-NUMBER POLYGONS
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E-mail; HUZITA@PADOVA.INFN.IT

Regular odd-number polygons are not commonly applied to pattern design
especially when number is larger than 7. Systematical search of patterns
limiting to only two figure elements with common. side unit (regular polygon
and gap space) has been done starting from a simple rectangular or
parallelogram reticle and applying their general characteristics to regular
odd-number polygons; at the right-up position that is the bottom side
horizontal (the only one horizontal side of the polygon), the highest position
is the top point as A at which the diagram has a left-right symmetry and the
extreme left and right positions also fall on point as < and > respectively. All
the sides adjacent to these three points are parallel to the corresponding sides
of the points corresponding of equal but exactly upside-down polygon like
vAv and > < . Therefore the right-up and up-side-down polygons can be put
in tangent at any of these pair of sides, and can be slidden along the side until
point to point coincidence of both polygons is reached.

Fig, 1
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Many interesting periodical or quasi-periodical patterns come out. The
interesting fact is that among these patters, hexagonal structures are formed in
natural way, somectimes regular sometimes not-regular. Non regular flat
hexagonal formations are possible for all the polygons of (3), 5, 7, 9, 11, 13, 15
sides etc. The cases of 5 and 11 sides are shown Fig. 2.

Fig. 2
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Only for some polygons; 9, 15 and 45 also the regular hexagonal structure is
possible. Curiously these numbers are all multiplicative combinations of two
prime numbers 3 and 5 and 360 (dcgrees) becomes divisible by these into even
integral numbers 40, 24 and 8. However this swuructure is less closed packing
than the flat hexagonal one.”

Only in the case of nonagon (9) (see fig..4) the second figure element of the flat
hexagonal structure has a special character; it is not a self mirrored image.
Then if the pair of mirrored images are considered equal, then an one-
dimensional order-disorder like arrangement could happen.

Fig. 4
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