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We review the role of symmetry in physics and of group theory. We explain the
relationship between symmetries and conservation laws. In particular, the recent
renewed geometrization drive is discussed, with gauge local symmetries, sometimes
spontaneously broken. Supersymmetry involves new generalized concepts. The inter-
relationship with order and with information is discussed. We survey the impact of the
developments in symmetry in physics on the recent progress in several related fields of
mathematics, especially in algebraic topology.

CHAPTER 1: SYMMETRY - POSTULATES OF IMPOTENCE

1.1 In physics, the search for symmetry is a search for abstraction

Physics is an experimental and observational science and thus deals., with the "real
world’. Its method, however, uses abstraction. The aim is to achieve.a unified and
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230 Y.. NE’EMAN

coherent presentation of all natural phenomena. To treat different phenomena in a
single formulation, physics has to strip away the circumstantial details and identify
the essentials and discover the common denominators and their constrained
behavior -- the laws of physics. This then implies sweeping generalizations. The
more phenomena are encompassed by a law -- the more it has to become simple
and rely on less specification.
Symmetry laws are in that category. They represent negative statements embodying
powerful generalizations. They are "postulates of impotence" as stated by Whittaker
in 1949, though highly potent ones. Impotence, because they state that it is
impossible to prefer one frame over the rest. If a crystal is hexagonal, it has a
symmetry under rotations by 360°/6 ~= 60", and it is impossible to select one face out
of the six as a "preferred" face. The principle of covariance in Einstein’s general
theory of relativity (the classical~ i.e. macroscopic, theory of gravity) states that it is
impossible to select a preferred reference frame -- i.e. the laws of gravity do not
depend on the selection of a particular reference frame, all reference frames are
equivalent. The French saying goes "la nuit, tousles chats sont grisn -- at night, all
cats are grey -- i.e. it is impossible to distinguish or specify a preferred cat. There is
then a symmetry between cats, they all look the same.

1.2 Active and passive transformations

Symmetry can bepassive or active. For example, Einstein’s principle of covariance,
one of the two pillars of the general theory of relativity, is apassive symmetry, since
it proclaims the inexistence of a preferred reference frame, i.e. a preferred
coordinate system. We compare two Cartesian systems of axes in the plane, for
instance: one with thex-axis lying horizontally, and one in which it is at 45* (or at
01.30 hours). We do not rotate the physical system at study, only the coordinates.
In an active symmetry transformation, we keep the same coordinates, but we really
move the physical system (or modify it, in the case of internal qualitative symmetries
that are not related to motion). When discussing for instance the earth’s motion
around the sun, we compare the state of the sun-earth system in winter and in
summer, at different phases of the rotation. In a passive symmetry discussion we
would have kept everything in place and only rotated the coordinate system.
Most symmetries can be used in either manner, but not all -- as in the example of
covariance.

CHAPTER 2: ALGEBRAIC FORMALISM

2.1 Group theory

The basic mathematical tool that is used in dealing with symmetry is the theory of
groups. It was invented by a twenty-one year old French student, Evariste Galois
(1811-1832), and written up as a "mathematical testament" in one night, prior to his
responding to a duel challenge in the morning -- a duel which did cost him his life.
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SYMMETRY, ORDERAND INFORMATION IN PHYSICS 231

A group is a set of elements, any two of which can be combined to make a third
element. For instance, the real integers (negative and positive) -- i.e. the set
... -3, -2, -1, 0, 1, 2, 3, ... with addition (+) as the combining operation -- fit this
description. In addition, there should be a neutral element, such that if combined
with another element a, the resulting element is still a; in our example, zero fulfills
this role, since a + 0 is still a. The last requirement is that there should be an
inverse element, ,i.e. an element 1/a which, when combined with a gives the neutral
element. In our example, -3 is the inverse element for 3, because -3 + 3 -- 0, etc.
A clock can serve as another example for a group. The elements are time-intervals
(given in minutes and in seconds). We set the clock on XII or zero hours; we now
move the hands so as to add some time lag and then continue with a second time
interval. Combination here amounts to adding angles cyclically. In other words,
the result of combining the elements

minutes and 10 seconds" with "3 minutes"
is the same as the result of combining "6 hours and 4 minutes" with "6 hours 4
minutes and 10 seconds’. In this example, the inverse of ~3 hours" is "9 hours"
because their combination will yield XII or "0", the neutral element.
This second example belongs to a class of groups known as transformation groups.
In such groups there is a substratum to which one applies transformations, changes
(here it is the clock, i.e. a circle with cyclic coordinates along it). The trans-
formations make up the group-elements; the combining operation consists in
applying the two transformations one after the other.
A group can be either discrete or continuous. Another name for such continuous
groups is Lie groups, after a Norwegian mathematician who first studied them,
Sophus Lie (1842-1899).
In our second example, we had a continuous group. But we can also apply a
discrete subgroup of that group: suppose we limit the elements to 60* angles, i.e.
any even number of hours. Two hours make a 60° angle clockwise; combining "-4
hours" with N22 hours~ yields "18 hours~, which coincides with "6 hours". There will
be only 6 distinguishable group elements in that group. If we always replace the
number of hours by its equivalent in the interval 0 -- 10 (since 12 - 0) we have a
.finite group with just 6 elements. This is the symmetry group of a hexagonal crystal
or of a snowflake. If we keep al! even hour values such as "-4" or ~22N or even(without replacing ~50~ by "50 ’.--’48" =- ~2", although we situate "50~ at the same
place as ~2") we are applying the covering group, in this case an infinite (countable)
covering group.

2.2 The rotation groups and non-commutativity

One of the most utilized groups in physics is a continuous group, the group of
transformations on the sphere, also known as the rotation group. We take a globe or
a ball and we apply to it various rotations. We combine these elements by applying
two transformations consecutively. The neutral element is known as the identity
transformation because we do nothing, so that the position of the globe after this
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232 Y.. NE’EMAN

transformation is identical with the position it was in before applying that
transformation.

This group is the rotation group in 3 dimensions -- the 3 dimensions of the space in
which the sphere exists and rotates. It could not be fitted in a fiat 2-dimensional
space such as a flat piece of cardboard -- or our clock’s dial. Indeed, our clock
group is the rotation group in 2 dimensions.
There is a very important difference between these two rotation groups. In the 2-
dimensional group (the clock) the order between two different elements does not
influence the result of their combination: "2" + "4" -- "6" and "4" + "2" -- "6", too.
This is a commutative group, also known as an Abelian group, named after another
young mathematician, the Norwegian Niels Henrik Abel (1802-1829) who died of
tuberculosis.
The 3-dimensional rotation group is non-commutative. You can make an
experiment: take a book, put it on the table or desk in front of you. Denote two
sides of the front cover byx andy (x is the side that is parallel to your abdomen, y is
perpendicular to it). z is the vertical axis, perpendicular to the front cover (and
parallel to the book’s "thickness" dimension). These axes should be regarded as
fixed to the book cover, moving with it.
Now rotate the book by 90* clockwise (when looking along the relevant axis from
its origin, left to right) twice: first around thex axis and then around they axis. The
book ends up standing with its spine to you. Now put it back in the original posi-
tion and try the same thing, but in the opposite order: first aroundy, then around x.
The book ends up standing on its long side, with the front-cover facing you.
We can try the same exercise with the x, y, and z axes defined with respect to the
room. You will get the same results except that they will be inverted: x followed by
y will yield the result we got previously fromy followed byx, and vice versa. In any
case, the order matters, so that the group is clearly non commutative.

2.3 Parity and CP

In physics, we describe the symmetry by the group of transformations to which it
corresponds. One such symmetry isparity, corresponding to the 2-element group of
reflections in a mirror. Electromagnetism, gravity and the strong nuclear force that
glues quarks within a proton, or protons and neutrons within an atomic nucleus --
all these forces obey this symmetry (denoted byP).
And yet it was found in 1956 that another nuclear interaction, the force that causes,
for instance, neutrons to disintegrate (beta decay) violates parity. When the
particle known as the mu-meson or muon (a heavy electron with a mass 207 times
that of the electron) disintegrates, it yields an electron, a mu-neutrino and an
electron-antineutrino. It turns out that neutrinos always spin like left-handed
screws, whereas antineutrinos screw rightwise. Had parity been obeyed, we would
have found either type of particle screwing in either direction.
It is interesting that these forces -- the weak interactions sometimes named after
the Italian physicist Enrico Fermi (1901-1954) -- do obey a different reflection

©
  ISIS-SYM

M
ETRY



SYMMETRY, ORDER AND INFORMATION IN PHYSICS

group: in addition to spatial mirror ~:eflection, also invert all charges -- electric and
other, such as leptonic (carried by a neutrino, for instance). Thus you have to
replace an electron by a positron, a neutrino by an antineutrino, etc._ This charge
conjugation. (or inversion) is denoted by C and the combined inversion by PC (or
CP). In 1964 it was found that a few interactions even violate CP invariance.
In the case of the rotation groups or parity, the transformations occur in physical
spacetime configurations. If, however, we discuss the CP transformations as a
reflection, we are going beyond spacetime: the inversion of charges occurs in an
abstract charge-space that has somehow become soldered here to ordinary space.
In the physics of particles and fields there are many such charges and our
transformations generally occur in their abstract spaces, which have come under
the term isospaces. There are symmetries in which we have a 3-dimensional
isospace and the group is the rotation group as in its action on a physical sphere --
except that the sphere is an abstract object that has nothing to do with spacetime.
Such is the symmetry between protons and neutrons: these particles behave as if
they were spinning in opposite directions -- but in this mathematical isospace,
describing internal, i.e. qualitative, features that do not reflect on spacetime.

2.4 Unitary symmetry (SU(3))

One such symmetry is an abstract invariance of the strong nuclear "glue" under the
Lie group SU(3) -- the Special Unitary group in 3 complex dimensions. Imagine a 3-
dimensional complex space -- here it consists of three generalized charges (also
named flavours) somewhat like the electric charge. Their complex nature means
that they are measured in complex numbers, such as 5 + 3i, where i------V~-I is the
imaginary unit, the square root of -1. Under the charge-conjugation operation C,
they go over to the complex-conjugate quantities, 5 - 3i in the above example.
Electric charge is also described by complex quantities, with complex conjugation
taking us from a positively charged state to a negatively charged one. Two real
quantities are thus involved: in the above example, these are the 5 (the real part of
the complex quantity) and the 3 (the real coefficient of v~l’, i.e. of the imaginary
part) in electric charge; however, rather than their appearing as separate entities,
they are intertwined within one complex quantity and its conjugate.
For SU(3), this means that there are in fact 6 real charges, appearing in the three
complex combinations and their conjugates. The simplest system capable of
carrying 3 such complex charges (non-trivially, i.e. other than zero amounts)
corresponds to 3 particles or fields. No such obiect had been observed when the
symmetry was discovered and they were hypothesized as either real states or
mathematical toy models to understand the symmetry (Goldberg and Ne’eman,
1963; Gell-Mann, 1964; Zweig, 1965).
The group SU(3) consists of all possible transformations that preserve the lengths
of complex vectors, just as the rotations also preserve lengths in a real space.
Length preserving transformations are called unitary -- this is the U in SU(3).
In addition, these transformations also preserve the equivalent of a volume in the
complex context; this is what the word special, the S in SU(3) stands for. There are
nine different possible transformations between 3 flavours u, d, s: u -~ u, u ~ d,

©
  ISIS-SYM

M
ETRY



234 Y NI:,"EMAN

u --, s, d --* u, d -~ d, d ~ s, s --, u, s -, d, s ~ s (the names relate to "up’, "down"
and "sideways’, or "singlct" originally). They can be combincd in many ways, but
one combination amounts to doing nothing: u --,, u, d --,. d, s ---, s. This leaves
eight basic transformations, which is why the colloquial term for SU(3) is the
EightfoM Way, a name introduced by one of the discoverers of that symmetry in
nuclear particles (Gcll-Mann, 1961 [unpublishcdl; 1962). The scientific term is
unitary symmetry, generally used by the other discoverer (Nc’cman, 1961). (The
symmetry was discovered by both physicists simultaneously and indcpcndcnlly).

2.5 Representations

A group can have many different representations. The simplest is the trivial
representation, i.e. the invariant or the scalar. For instance, temperature is
invariant under the application of rotations in our room. We apply a rotation, and
yet nothing happens as far as temperature is concerned. Another example is the
area within any closed curve drawn on a sheet of paper, when acting with 2-
dimensional rotations. If the figure is a rectangle with its longer side drawn
horizontally and we rotate the drawing by 90°, the sides will have. all changed their
configuration (they are vectors), but the area has remained unmodified.
For rotations in 3-dimensions we can have vectors and tcnsors of any order, i.e.
more complicated representations.
We can take an example in SU(3). The basic representation that was used to define
the group involved a complex 3-dimensional vector. The fields that actually carry
the 3 flavour charges are known as quarks. Introduced as either true particles or a
toy model, later (1964-69) experimental and theoretical results showed that they do
not exist as separate particles, but that they do have a physical existence when
"confined" within protons, neutrons, hyperons, and mesons. One can sense their
presence when probing inside such particles with extremely hard gamma rays.
In any case, the quarks span the 3-dimensional representation of SU(3). Denoting
them as before by u, d, s, the anti-quarks u*, d*, s* carry the conjugate (or inverted)
charges and span the 3 complex dimensions of the conjugate representation 3*.
Let us now try to list all possible combinations of 3 such quarks: uuu, uud, etc. We
can arrange them in an array

ddd ~     udd
/
/

dds

dss

~--     uud *’- uuu
/ /
/ ¯ /

uds ~- uus
/ I

./
~SS

/
!

sss
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In this array, moving one step along the arrows transforms a u quark into a d quark.
Moving parallel to the broken line down and to the left, transforms in each step a u
quark into an s. Moving along the dots, down and to the right, transforms a d quark
into an s. This array is thus a 10-dimensional (you can count the various 3-quark
states) representation of SU(3). in fact, it is an important representation
historically, because such 3-quark states were known in 1%2, except for the sss
combination and one could therefore predict the existence of that particle state
with all its specific properties. It was indeed discovered experimentally in 1964.
There are nowadays entire beams of omega-minus particles (the sss combinations).
For a phcnomenological and historical treatment of particle physics, see Ne’eman
and Kirsh (1986).
The above example illustrates an important feature in the applications of
symmetries at the particle or field level: they provide a classification. Particle states
or fields have to form multiplets of the relevant symmetry group. In many cases in
particle physics the sequence is even inverted: it is through the identification of
multiplcts that one guesses at the symmetry.

2.6 Lie algebras and conservation laws

A very important role is played by infinitesimal transformations. Readers who are
not familiar with the calculus should think of very gradual transformations, in
extremely small steps. Suppose we apply a rotation to this page. The amount we
rotate by is an angle. We could make a 30* rotation in 30 small steps of 1° at a time.
The angle of 30* is the magnitude of the parameter of this Lie transformation. The
rotation per degree is called the algebraic generator. It represents the small
(infinitesimal) transformation. If repeated 30 times it will yield the finite rotation
we wished to perform -- except that it should be applied like a compound interest:
each new tiny application acts on the system by taking it from the position that was
reached through the combined effect of all previous applications (mathematically,
this is an exponentiation).
The algebraic generator of rotations is called the angular momentum and denoted
byJ. In 3 dimensions there are 3 independent ones: x --,y _(or y ---x, which is the
same rotation), y -,.z and z -,.x. They are denoted jI,jT, j3.

There is an algebraic generator for each dimension of the group: in SU(3) for each
of the eight possible types of transformations that we have enumerated. The 8
algebraic generators of SU(3) are called the unitary spin and are denoted by F (F
Fz, etc.).      .
The study of the role of symmetry and invariance goes back to the late eighteenth
century (Euler, Lagrange) and the nineteenth (Jacobi, Hamilton, F. Klein). It was
further advanced by an important theorem due to Emmy Noether (1918). The
theorem was derived for classical physics, but it has acquired much more
importance after the advent of quantum mechanics.
The dynamical time-evolution of a system is represented in physics by the
Hamiltonian (a function in classical physics, a mathematical operator in quantum
physics). Let us think of the Hamiltonian as the algebraic generator H for time-
displacements. It will represent the time-displacement per tiny unit of time -- say a
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picosecond (one "American" trillionth of a second) just as the angular momentum
generators j1 etc. were defined as the rotations per degree.
We can now write statements,

[H, Jll.=0, [H, J2]----0, .... [H, FS]----0, etc.
The symbol [, ] is a commutator. It represents the difference between acting (on a
system on its right) first with j1 and then with H and acting in the inverse order.
A vanishing commutator means that in acting on a system, the order between H
and j1, for instance, thus does not matter.
This can be understood in two ways.

In one interpretation, we think of H acting on the system, i.e. displacing it in time,
aging it. The statement then says that applying J1, for instance, onto H has made
no difference: "the dynamical history of the system is unchanged by a rotation’. It is
a message of symmetry; it is a short-hand way of saying that the physical laws are
spherically symmetric, invariant under rotations (that is so if the commutator is
also vanishing with j2 and f3).
But there is another conclusion. Let us think of the Hamiltonian H as the time
displacement generator. If the application of j1 or 175 to the system is not
modified by a time displacement, this means that J~ or F5 represent conserved
quantities or generalized conserved charges.
This is the essence of the theorem of Emmy Noether: for every continuous
symmetry there is a conservation law and the conserved charge is identical with the
algebraic generator of the symmetry -- and vice versa.
Thus SU(3) corresponds to the conservation of the F~ to F8 charges of unitary
s 1pin; angular momentum J to j3 is another such set etc. Taken as a charge. H
itself represents energy conservation. The conservation of linear momentum PI top3 is the result of symmetry under spatial displacements.

CHAPTER 3: BROKEN SYMMETRIES

3.1 Laws of nature versus boundary conditions

Symmetry can sometimes be in the laws of physics and then has a great range of
applications: in the example of Einstein’s theory of gravity, for instance, whatever
the gravitational problem, the laws will still have to be stated covariantly (i.e.
independently of the selection of a reference frame, of a coordinate system).
Sometimes, however, there is a symmetry that relates to the boundary conditions. In
the Kepler problem (sun and planets) for instance, there is an a priori spherical
symmetry in the given conditions themselves: the sun is assumed to be spherical,
and therefore there will be no preferred direction for the its gravitational pull -- in
the way that would happen in a description of gravity in our room. It so happens
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SYMMETRY, ORDERAND INFORMATION IN PHYSICS 237

that the laws themselves also contain no preferred direction and are spherically
symmetric, even for our room, in which the boundary conditions are less symmetric.

In fact, the symmetry of the laws is generally greater than that of the given ones; in
the case of Einstein’s theory, for instance, the laws are also locally Lorentz-
invariant, which includes, aside from insensitivity to rotations of the system in
space, an invariance under accelerating boosts (special Lorentz transformations).
Sometimes, we are surprised by the amount of symmetry sustained by the boundary
conditions. In cosmology, for example, there is no known a priori reason for the
boundary conditions to be very symmetric. They could have been as complicated
and asymmetric as we wish -- and yet in reality, the observations show that the
cosmological boundary conditions are highly spherically symmetric.

3.2 An asymmetric vacuum state

In modern treatments, there is a delicate interplay between laws and boundary
conditions. We shall see that symmetry has to be broken at some stage, when we
deal with the real world. In the words of Francis Bacon, "there is no excellent
beauty that hath not some strangeness in the proportion". Rather than break the
symmetry of the laws, it is more convenient -- and useful -- to find formulations in
which the laws are entirely symmetric, and the symmetry breakdown is "blamed" on
some boundary conditions. In quantum mechanics, the "real world" is given by the
Hilbert space, the abstract space in which each dimension represents one position
in spacetime. For instance, if I can be either at home or at the office, we can draw a
2-dimensional diagram

Y
1-

0.71

home 0.Tt

in which the abscissa is related to the probability that-I am at home and the
ordinate relates to the office. The probability of my being in either place is given by
the square of the length of the projection on the relevant axis. When I am sure to
be home, my state is described by the point a: x ~= 1, y ---- 0, so that x2 ---- 1 and
also x2 + y2 ~ 1. When I am sure to be at the office, the state is described by the
point b: x=:0, y----l, so that y2~landagainxz +y2sl. Thepoint o
represents a state in which x ---- 0.71, ys 0.71; 0.71 is roughly ~t~/2, so that
(0.71)2 ---- 1/2. Thus, x2 ---- 1/2, y~ ~= 1/2 and there is a 50% chance for my being at
home and another 50% probability for my being at the office. The total of the
probabilities has to be 100%, and indeed xz + y2 --_ 1 again.
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If a particle can be at 29 different places, the Hilbcrt space will have to be 29-
dimensional. Mosl situations correspond to particles that can be at an infinite
number of posilions, and in most casks the Hilbert space has to be infinite-
dimensional.

We now return to the breaking of symmetry. In most cases this can be understood
in the following way: the laws do obey the full symmetry, but the basic state in the
Hilbcrt space, the vacuum state does have a preferred direction.

The vacuum slate is the state in which there is nothing (although in quantum
mechanics you can extract a lot from the vacuum for a brief time, within the error-
brackets provided by the Principle of Uncertainty). To get a one-particle state, we
have ways of constructing the particle onto the vacuum state. We can see to it that
the construction should not modify the basic direction relating to the
characteristics of symmetry: if, for instance we are dealing with a type of charge
(that is not explicitly conserved because the symmetry is broken) we already endow
the vacuum with a certain amount of that charge, and the particles built on this
vacuum will also have that feature. In this manner, we continue to have a preferred
direction imposed by the boundary conditions of the problem, in this case the
Hilbcrt space.

3.3 Superconductivity as a model

This approach was first introduced in the study of superconductivity from the
physics of condensed matter. In that discipline, this method was invented
(Ginzburg and Landau, 1950) to explain phase transitions, such as the transition in
a material between a paramagnetic and a ferromagnetic state when it is cooled
down to the critical temperature -- or the transition to the superconducting state at
very low temperatures (since 1985, the temperatures are no more that low). In a
more structural theory of superconductivity (Bardeen, Cooper, and Schrieffer,
1957) we can understand the asymmetric behavior of the vacuum.
In that problem, a false vacuum state is created, when the overall interaction
between the electrons and the atomic lattice in the metal produces a pairing
between electrons: two non-contiguous electrons start acting as if they were bound.
This then becomes the lowest-energy ground state and acts as a vacuum for that
particular situation; but this vacuum is not really a neutral empty vacuum, and thus
contains characteristics that break the symmetry of the equations.
This idea has been described as a spontaneous breakdown of the symmetry. The
method was successfully generalized to the physics of particles and fields (Nambu,
1960; Nambu and Jona-Lasinio, 1961; Goidstone, 1961). Here, the assumption of a
directed vacuum requires the existence of massless particles -- massless in the
approximation in which all other effects are removed. The massless particles are
needed to complete the vacuum’s multiplet.
In an unbroken symmetry, the vacuum is invariant, i.e. if we apply to it the
symmetry transformations, it does not change. In other words, the symmetric
vacuum is a scalar, forming a single-state muitiplet.
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But when the vacuum has a direction, applying the symmetry operations to that
state should rotate it into some other state. What would lhat state be like? It turns
out that a particle with zero mass could serve as a partner for our non-single
vacuum.

3.4 Chiral unitary symmetry

The idea was very successfully applied to the understanding of the Yukawa force.
This is the force responsible for the attraction between nucleons (protons and
neutrons) in any atomic nucleus. It involves the exchange of pions (the meson
postulated by Yukawa and Stucckclbcrg in 1934) between nucleons, like volley
balls in that game. The force obeys a certain symmetry callcd SU(3) ! SU(3) -chiral,
because the relevant conserved currents are characterized -- on top of the unitary-
symmetry charges they carry -- by left or right handedness. The two SU(3) in the
name of the symmetry correspond to two currents, one an SU(3)-left and the other
an SU(3)-right. Note that parity is conserved because both chiralities are present; it
is only when the left-chiral current of SU(3)-Ieft comes by itself -- in Fcrmi’s weak
interaction -- that parity is thereby broken.

The doubling of the SU(3) currents and symmetry is quite analogous to what we
observe in the case of angular momentum. In very low energy atomic physics we
can have a separate conservation of spin and orbital angular momentum, i.e. two
SU(2) currents of angular momentum. However, once we increase the energies
involved, the spin and orbital angular momenta mix, and only total angular
momentum is conserved. The same happens with the unitary symmetry chiral
currents. Once the symmetry is broken, only the sum of SU(3)-left + SU(3)-right
subsists as a conserved quantity. This sum is plain SU(3), and in a certain
approximation it is even locally conserved. Its currents then couple universally to an
octel of spin 1 vector-mesons.

Chiral unitary symmetry together with this SU(3) gauge provide a good
phcnomenological working theory for the physics of hadrons -- the hundreds of
different particles that feel the strong nuclear interaction and that we now consider
as consisting of bound systems of either three quarks or a quark and an antiquark.
The theory is sometimes described as current algebra. It fuses two theoretical
discoveries of 1959-64: unitary symmetry SU(3) (Ne’eman, 1961; Gell-Mann, 1961)
and spontaneous symmetry breakdown (Nambu, 1960; Nambu and Jona-Lasinio,
1961; Goldstone, 1961) using techniques (GelI-Mann, 1962) inspired by
Hcisenberg’s version of quantum mechanics, the matrix mechanics (Ne’eman, 1967;
Adler and Dashen, 1968).

CHAPTER 4: LOCAL (GAUGE) SYMMETRIES

4.1 A financial interlude

The global symmetries we discussed in Chapter 2 are mostly useful in the first
exploratory research phase in the physics of particles and fields: they provide a
classification, which then leads to the understanding of structure. The experience of
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the last 75 years has been that the dynamical theories are based on local symmetry
principles.
The first such symmetry was general covariance, a. passive symmetry principle of
general relativity. The other principle of that theory, the principle of equivalence, is
to a certain extent the model of how a local gauge symmetry should be actively
implemented. This is in fact the meaning of its name. We shall return to this
question in a later part of this chapter. First we shall present the generic local
gauge principle, the Yang-Mills gauge (Yang and Mills, 1954).
We start with an analogy. Let me assume (for a few brief minutes) that I am a
wealthy businessman, deeply involved in international deals. Almost daily, and
sometimes more than once a day, I have to transfer sums of money from country to
country. In each country, there is a local interest rate that is fixed by the local
government. As a result, I have to be very careful and think twice before ordering
my bank in country A to transfer funds to country B. Indeed, if the interest rate in
country B is much lower than in country A where my money is now, and should the
contemplated transaction be delayed or cancelled, I shall have suffered an
unnecessary loss.
I can resolve this difficulty and enjoy an effectively fixed interest rate by making a
deal with an international banking concern. I shall deposit my money with them
and make all my transfers through their branches in the various countries, provided
they undertake to compensate me for any loss incurred because of the variations in
interest rates. They cannot just give me a fixed rate internationally (a global
symmetry) because of the local legal implications: they might loose their permit to
operate a bank in country C, should they disregard the legal rate in that country.
What the international banking corporation can do is to establish an auxiliary
corporation (called GF for General Financing -- or for Gauge Field) that would
own and run in each country some business operation out of which they will
compensate me for the difference between the local interest rate and some
standard that we fix together (perhaps the rate in the USA, for instance). The
compensation will have to be indirect: they could, for instance, sell me shares in
some firm owned by GF and offer me a reduced price -- precisely by the same
amount that I lost over the lower local interest rate.
This method appears much more complicated than having a unique global rate, but
it might still represent the only viable solution for this financial problem. The
implication is that aside from any other business I might be involved with in
country B, I shall also be interacting everywhere with the GF corporation. It will
be through this additional interaction that the compensation will be able to take
place and the symmetry between all my financial ventures -- whatever the country
-- will be restored.

4.2 The Yang-Miils gauge

It is time to wake out of my financial dream -- for a few minutes I could almost
believe I would end up making it in Fortune magazine.
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Yet I do believe that physics is no less exciting. Imagine an internal symmetry -- i.e.
a symmetry that does not act on the spacetime coordinates. Assume the relevant
symmetry parameters, such as the amount by which we rotate a state in its isospace
orientation -- changes from place to place. We allow an arbitrary selection of
angles at each place. This is quite natural, since we cannot communicate with all
other places instantaneously and it would thus be impossible to organize arbitrary
global active transformations without preparation.
In an example such as flavour-SU(3) such a transformation consists in replacing,
e.g. a u quark by a d quark -- in practice a proton (~. uud) by a neutron (-- udd).
With the superposition principle of quantum mechanics, it can even consist of
gradual transformations of this type. However, while we are changing u ~ d at x,
somebody is changing d --,, s at y. The only way in which these changes will not
introduce inconsistencies is through the existence of a compensation system GF:
the gauge field.
The gauge field will interact with the charge-currents of our symmetry -- they will
represent the sources that induce its presence, in the corresponding equations. The
interaction between the charge-carrying particles or fields and the gauge field will
result in a restoration of a symmetry -- a very large one in this situation. It is the
inexistence of preferred reference frames in isospace (this is the postulate of
impotence for a global internal transformation) multiplied infinitely because we
can now select any reference frame out of all the possible ones at x and have that
freedom independently at all the infinite possible positionsx in spacetime.
The electromagnetic field is such a gauge field, for the Abelian (commutative)
group U(1) of rotations in the complex plane or phase transformations.
Remembering the fact that a charged field is described by complex numbers c (and
that the inverse charge is given by its complex conjugate c ), we replace the
representation of the complex number a + bi (where i------V~ is the imaginary unit)
by its representation by a modulus r (the length of the vector from the origin in the
Argand diagram for the complex plane) and a phase ~p(the angle between the real
axis and the vector from the origin),

c ~ a + bi -- r exp(i,p)
c ---- a - bi = r exp(-i~)

where r2--a2+ b~, tan~p =b/a

In~a~inary
axis

0 ~
R~aI ax~s

and the Lie group is the rotation group in the complex plane U(1), so that applying
exp(ia) to the above c, this will rotate it to c’ ,= r exp i(~p + a). Here we are using
a(x), i.e. we are changing ,# by locally dependent amounts. This would have been
impossible -- it would have introduced arbitrary gauge-dependent quantities such
as a~ and #a into the physical equations -- except for the presence of the
electromagnetic field 7. The variation of the electromagnetic field itself is also
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locally dependent (it will involve 0a) and it is adjusted so as to cancel the
arbitrariness introduced by the local freedom in selecting the transformations. The
gauge field does it by interacting with the electromagnetic charge and current densities.

The electromagnetic charge and current (the flow of the charge) are the sources of
the electromagnetic field in Maxwell’s equations. Forty years after Maxwell
introduced his equations, their global symmetry, the Lorentz group which
dominates the world of the special theory of relativity, was understood by Lorentz,
Poincar~, Einstein, and Minkowski. Twenty-three years later (Fock, 1927; London,
1927; Weyl, 1929), the local symmetry of the quantum version of Maxwell’s
equations was also understood, following an unsuccessful first try by Hermann
Weyl who tried to identify that gauged rotation with a non-quantum feature, a scale
transformation (Weyl, 1918).
The same type of local symmetry with a corresponding gauge field can be generated
by any Lie group applied internally (i.e. a group that does not act on the spacetime
manifold itself) -- (Yang and Mills, 1954; Shaw, 1955). For a non-Abelian (i.e. non-
commutative, see 2.2) group, the gauge field itself has more than one component;
it should have one component per dimension of the group space, or per
independent parameter.

The gauge ]ieM is thus itself a multiplet of the group, the regular or adjoint
representation, the same representation as that of the algebraic generators of the
group, the charges with which the field components will interact.
Since the Yang-Mills fieM itself is a non-trivial muitiplet, it also carries the group
charges, like other representations. It will therefore contribute to the charge-
current density and will thus interact with itself. This is .not so with the
electromagnetic field, which does not carry electric charge. As a result, the
spacetime dependence of the resulting force is different too: as against the 1/r2
dependence of the Coulomb force; we have here a constant, range-independent
force.

4.3 Quantum chromodynamics and confinement

We have learned an interesting and unexpected lesson in the seventies. It turns out
that all four forces that we understand are gauge interactions! One ~s classical general
relativity to which we shall soon return for another look at the principle of
equivalence. We do not know what quantum gravity will be like -- it is one of the
important open problems in physics -- but it will be surprising if it does not have
even more local symmetry.
The fundamental nuclear glue is a gauge interaction with SU(3) as the local gauge
group. Note, however, that this is a different SU(3), known as SU(3)-colour (Hart
and Nambu, 1965; Fritzsch and GelI-Mann, 1972) as against the "older" SU(3)-
flavour.
SU(3)-flavour -- or even its extension as a 9-parameter group U(3) in which the
conservation of baryon charge (or atomic weight number) becomes an integral part
of the symmetry -- also has an effective gauge interaction which dominates the
region of energies between 1 -1000 GeV, with mesons known as the aT, p*, K+,
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K*, K*, ¢z*, ~* as the gauge fields. These mesons have the correct spin 1 like the
electromagnetic field 3’*. However, as the symmetry is only approximate, they are
massive and short ranged accordingly. In practice, we know that they are also
quark-antiquark compounds.
Colour-SU(3) is a precise symmetry, therefore probably more fundamental. Its 8
vector mesons (gluons F) are massless and would have been long-ranged like 3’* if it
were not for the confining property (Fritzsch and GelI-Mann, 1972).
This feature is a consequence (’t Hooft, 1972; Gross and Wilczek, 1973; Politzer,
1973) of the constant strength of the force -- upon condition that the number of
matter fields does not increase beyond 16 flavours (today, we would say 8
generations). It causes any particles carrying the colour-SU(3) charges to be
confined within systems whose total colour-SU(3) charge vanishes: either quark-
antiquark combinations in which the colour cancels mutually, or 3 quark
combinations in which there are always mixtures of the 3 colours in which the total
vanishes -- just as we get a white colour from mixing red, blue, and yellow.
The Yang-Mills interaction of colour-SU(3) is called QCD (Quantum
Chromodynamics). The mesons that mediate chiral flavour SU(3) symmetry
(through the Nambu-Goidstone mechanism that we reviewed) are in fact quark-
antiquark compounds glued by the QCD gluons -- even though they manage to
fulfill an approximate dynamical and symmetrical role in addition, like the SU(3)-
flavour vector mesons.

4.4 Gravity as a local gauge

There are two important features -- universality and equivalence -- that are
specific to the dynamics deriving from local gauge theories.
Both features are already present in Einstein’s general theory of relativity, the only
dynamical theory which already at the classical level displayed several of the
features of a local gauge theory. Remember that the gauge nature of Maxwell’s
theory only appeared at the quantum level, with the gauged phase as group
parameter.
The group that is locally gauged in the theory of gravity in the full sense (i.e. both
passively and actively -- we shall return to this point in what follows) is the
Poincard group, with some adaptations that we shall discuss. The Poincar6 group
includes the Lorentz subgroup (rotations and Lorentz boosts -- i.e. changes of
velocities) together with translations in space and time.                   ~ ~
Only the Lorentz subgroup in its spin action, -- i.e. when it acts intrinsically and
not orbitally -- really parallels the (simpler) Yang-Mills model; the translations
and orbital rotations or boosts introduce complications because they change the
point in spacetime at which the transformation was defined. Remember that
the Yang-Mills gauge involves arbitrarily different transformations at different
points, with the gauge field supplying parallelism. The transformations at the
position x stayed at x. Here, when we perform an x-dependent translation in space
~tself (rather than in an isospace as in Yang-Mills) at x, we end up arriving aty! Our
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problem is that the group parameter, the amount by which we transform, is a length
in spacetime itself.
This is resolved through the utilization of a special mix of a passive with an active
transformation: first we perform a passive transformation, just changing the
coordinate’s origin and inclinations so that the point in space that was known asx is
now given by y. Nothing but a change of name -- which is why this passive
transformation is called an alias. Then we perform an active transformation,
moving the system (a matter field, for instance) from its position (formerly called x
and presently called y) to a new position whose coordinates in the new system of
coordinates will have the value x. This is a real change of place, which is why the
transformation is nicknamed an alibi transformation. In any case, the result is
indeed -- formally at least -- a local transformation, since we start and end atx. We
could also invert the order and perform the alibi first (move really from x to y) and
then have an alias transformation that would renamey as x.

4.5 The principle of universality

Let us first discuss the principle of universality. In Newton’s theory, the strength of
the coupling of matter to the gravitational field is given by the mass of that matter;
in Einstein’s theory this feature takes on a relativistic profile and the charge and
current that couple to gravity are given by the various components of the energy-
momentum tensor. In fact, the static Newtonian component is given by the energy,
and for a body at rest, this is Mc2, i.e. it is again the mass (up to constants lhat are
incorporated in the units) and we are back with Newton’s third law. On the other
hand, for a photon of light, it is indeed the energy E ~ hv according to Planck’s
hypothesis (the photon has no mass) and this gives in the general theory of
relativity the correct observed deflection (e.g. of rays passing close to the Sun, as
observed during the 1919 eclipse).
When we follow Emmy Noether’s theorem and derive the conservation laws
resulting from invariance under the Poincar~ group we find that the conserved
charge-current-density corresponds to the ten components of the energy-
momentum tensor. The static conserved charge is indeed just the energy.
Universality means just that: the strength by which matter "couples’, to the gauge fieM
is given precisely by the conserved "charge" corresponding to the algebraic generator of
the symmetry we have gauged.

Here the gauge field is the gravitational potential and the coupling strength is
simply given by the energy, as the relevant conserved quantity.
If we now turn to Yang-Mills cases, we see that for electromagnetism, the
conserved quantity as derived by Noether’s theorem is the algebraic generator of
U(1), and this is the electric charge, as befits Coulomb’s law.
For flavour-U(3) as a phenomenologicai field theory describing correctly the
physics in the GeV enerev region, we find that the coupling strengths to the
relevant t~q:, p°, Kq:, K°, "l!~, ~*, o~° fields are given by the corresponding proper
values of the nine U(3) generators when acting on the relevant matter
representations. Notice that in any internal symmetry, the universal couplings will
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consist in pure numbers resulting from the algebra. Universality establishes a
unique (universal) scale for these couplings. In a non-gauge.theory the couplings are
related within a single multiplet (say the couplings of r ~-and 7r° to protons and
neutrons, related by an SU(2) isospin global symmetry), but there is no relation
imposed by the symmetry for different multiplets. In a local gauge theory, all couplings
are fixed by the algebra, whatever the multiplet. This is precisely where universality
comes in.
For colour-SU(3) in QCD, the situation is more complicated because of
confinement. This is because the measurement of a charge is generally performed
by using the Coulomb force, at a distance from the source -- which is impossible
here.
For the (Fermi) weak force, it is given beautifully by the left-chiral currents of
SU(2) (which for the quarks are embedded in left-chiral-SU(3) in a specific way --
Cabibbo, 1963) and an additional U(1), the weak hypercharge (Weinberg, 1967;
Salam, 1968).
There is another aspect which played an important role in this context. Flavour-
SU(3) is the parity-conserving subgroup of chiral [SU(3)-ieft x SU(3)-right]. The
parity-conserving "charge" of the weak interaction currents coincides with a subset of
the flavour-SU(3) charges -- a symmetry of the strong nuclear forces. Because of this
feature, the strong forces do not renormalize (i.e. do not modify the strength of)
the weak vector current Fermi coupling (i.e. the weak parity preserving charge). Its
value in neutron beta-decay is about the same as in muon-decay, although the first
mentioned experiment involves strongly-interacting particles (neutrons and
protons) whereas the second one does not -- the muon is a heavy electron which
does not partake in the strong nuclear interaction. The observation of this feature
was instrumental in leading to the understanding of the gauge structure of the weak
currents (Gershtein and Zeldovich, 1955; Feynman, Gell-Mann, 1958; Sudarshan
and Marshak, 1958).
A similar effect was discovered for the parity-violating charges in the weak
interactions. They also involve a subset of the chiral SU(3)-Ieft x SU(3)-right
charges, i.e. again a phenomenoiogical symmetry of the strong interactions. These
charges correspond to the part of chirai symmetry that is spontaneously broken
through the Nambu-Goldstone mechanism, with the pions and kaons as Goldstone
particles. As a result, one can relate the strength of the weak axial-vector charges
(the parity-violating subset) to the coupling strengths of the pions and kaons
(Goldberger and Treiman, 1958) which are given by chiral symmetry. In fact, it is a
a certain adaptation of the universality idea that gives these values of the strengths
of the couplings of the mesons ~r :t:, w~, K :1:, K*, K*, 7" to nuclear matter, in terms
of the anti-correlated part of the chiral SU(3) x SU(3) charges.

4.6 The equivalence principle

In gravity, as enunciated by Einstein, the principle of equivalence is a prescription
for a transformation that does away locally (i.e. only at one selected place in each
case) with the gravitational field. Geometrically, this consists in going over to a
frame that is flat (that is, no apparent gravity), i.e. to the tangent manifold at that
specific point.
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Physically, we have to go over to an accelerated frame. Einstein himself discussed
the fact that it is impossible to distinguish locally between a gravitational field and
an accelerated frame. When waking up in a spaceship and feeling a strong pull
towards "the floor’, we do not know whether this means that the ship has arrived
and is firmly anchored to a planet whose gravity we experience -- or whether
instead we might not just be in an accelerating phase in the trip, which glues us to
that floor.

Equivalence is thus yet another symmetry between two situations, holding locally
only, and specific to local gauge interactions.
In principle, such a transformation should exist for any local gauge theory. The
difficulty resides in performing a local active gauge transformation that will result
in the cancellation of the Yang-Mills potential. In electromagnetism, this means
arranging for the appropriate phase change, for instance. In a flavour-SU(3) gauge,
cancelling a a T potential can only be an idealized cancellation since the a :t: is a
massive particle and will not just vanish when its dynamical action is cancelled.
This is also true with the weak interaction gauge SU(2) x U(1), mediated by the
very massive (80-90 GeV) W:I: and Z* bosons, which we discuss in the next section.

4.7 Spontaneous symmetry breakdown in a gauge interaction

The superconductivity-inspired mechanism for a spontaneous breakdown of a
global symmetry can be adapted to a local gauge symmetry (Higgs, 1964; Englert
and Brout, 1964). Spontaneity implies a preservation of the conservation laws
generated by the symmetry in the global symmetry case, with the vacuum and other
particle states displaying the breakdown, and with related massless Goldstone
mesons.

In the presence of a local gauge symmetry, the symmetry breakdown involves a
meson multiplet, with a specific self-interaction and some dynamical features that
make out of one of the components an effective false vacuum, i.e. a state with the
lowest energy. This component has to be electrically neutral and should also have
no other completely conserved charge, since that charge would thus communicate
with the vacuum and its related symmetry would thus be spontaneously broken.

The Higgs meson multiplet -- like any other matter multiplet carrying the local
charge of symmetry (in the weak interaction this is SU(2)-left x U(1) ) --
contributes to the current and interacts with the gauge fields. As a result, some of
its components (other than the false vacuum) undergo a reconstituting process and
transmute into third components of the gauge field: without this mechanism, the
GF is massless (like in electromagnetism) and thus has only two polarizations per
group parameter. Now it acquires a third (longitudinal) component and becomes
massive.

The original false vacuum component also acquires mass and in this simplest model
of the mechanism, it should be observed as a massive spin 0 particle.
All of this has been vindicated in the weak interaction. It was possible to evaluate
from the model what the masses of the gauge fields W:I: and Z* should be, and they
were indeed observed experimentally in 1982. As of the writing of these lines, the
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search for the Higgs particle is on. The simplest model, however does not provide a
method for the evaluation of its mass.

CHAPTER 5: SYMMETRY, ORDER, AND INFORMATION

$.1 More symmetry implies less information

Note already the negative correlation between symmetry and information. Symmetry
represents a lack of information, an impossibility to specify, to provide
identification, which is an important type of information.
Lack of information in large ensembles is traditionally connected with entropy,
disorder. However, this statement is not precise enough. Missing information may
be connected with disorder, in the sense that it becomes too difficult to specify that
information because it relates, for example, to myriads of turbulent molecules. In
computer language, it would involve myriads of information bits. This type of lack
of knowledge is described as subjective because it is due to our own limitations.
But in quantum mechanics, on the other hand, missing information just corresponds
to its inexistence -- the physical state has not yet been generated, as long as a
measurement has not been performed (a measurement in the sense of an
irreversible interaction with a macroscopic system). At this stage, all there is just a
wave-function, with a probabilistic interpretation. We know from the many
experiments that have realized the EPR idea (Einstein, Podoisky, and Rosen, 1935)
and applied the test provided by Bell’s inequalities (Bell, 1966) that there is no
physically concrete underlying reality other than the wave-function. This lack of
knowledge is then an objective lack of information, information that does not yet
exist.
In the case of the grey cats of the French proverb, the lack of information is due to
darkness -- not to inexistence -- i.e. to a difficulty in the acquisition of the
information, resembling the case of disorder. It is subjective.

Very recently, an advance in the study of chaotic systems has revealed the existence
of objective entropy in non-quantum situations. There are problems in which an
infinitesimal difference in the initial conditions will lead to totally different
evolutions of the systems. These are then unstable initial conditions, generated in
collective states by the internal interactions between the constituents.The
phenomenon of turbulence in a liquid or in a gas is one such situation.

5.2 Measures of entropy

The entropy of a symmetry is the magnitude of the "Whittaker impotence" it
represents. This can be given a quantitative definition by taking, for instance, the
volume of the Lie group -- or some quantity related to the group dimensionality.
SU(3) invariance is related to an 8-dimensional manifold. However, SU(3) is a
broken symmetry. It is broken through the c quark being about 30 times heavier
than the a and b quarks. We think this is related to another force, the force
responsible for the emergence of generations of quarks and leptons (particles
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resembling the electron). This force, which I named thefifih interaction twenty-five
years ago (Ne’cman, 1964), therefore reduces the overall symmetry, leaving a
subgroup U(2) as the residual invariance. U(2) has a 4-dimensional group manifold
and is therefore a smaller symmetry and represents less entropy.
The study of entropy in relation with the need to describe complexity has produced
in recent years completely different approaches to the objectivisation of entropy.
The aim is to have a description that would represent, for instance, the complexity
of a living cell or of an organism.
One such measure is algorithmic complexity, introduced by Kolmogorov and Chaitin
independently. The quantity characterizing the complexity of the state is the length
of the shortest computer program that can describe the state. It will represent the
information contenl of that state, a kind of inverse of the state entropy.
A crystal can be described by a much shorter list of instructions than a living being
(whose DNA is probably the relevant program). This means that the crystal
embodies less information and has a higher intrinsic entropy than a living system.
On the other hand, a gas with 1025 molecules could only be described by a program
listing them all -- the state and the design program are of the same magnitude. This
would imply that the gas contains a very large amount of information -- and little
entropy -- which is not what is meant by entropy.
This issue is resolved in a proposal due to Bennett. He measures order -- the
opposite of entropy -- by the logical depth of the system. It represents the logical
length of the program for the realization of the state, once the data is fed. To
construct a living cell one would require an extremely long set of instructions. For a
crystal, a limited number of steps would suffice. For a gas of molecules, the initial
data would be of an enormous magnitude, but the instructions program would
consist in a trivial "copy that data’. This definition therefore does fit the concept of
objective entropy.
We can adapt these concepts to symmetry. Instead of the dimensionality or volume
of the group, we could measure the information content of the vacuum, i.e. of the
multiplet containing the Nambu-Goldstone boson. One way of measuring this
quantity could draw from the structure of the Young tableau for that
representation of the group, which is similar to a computer program for its
construction.
This does not appear interesting in finite-dimensional Lie groups, but something
similar might be possible and helpful in infinite cases such as the presently
fashionable group of conform transformations (transformations preserving angles)
in two dimensions -- a symmetry of the theory of the quantum superstring (the string
for short) a ngreat hope" at present, as a candidate "theory of everything’. The
subject calls for further investigation.
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CHAPTER 6: THE INTERACTION BETWEEN PHYSICS AND
MATHEMATICS

249

6.1 Representation theory

The advances in the applications of symmetry in physics have boosted the progress
in algebra and geometry. An important such step occurred when Wigner (1939)
classified the unitary representations of the Poincar~ group. This was essential to
the description of particle states in physics, and later was instrumental for the
construction of appropriate equations of motion. To construct the representations
of the Poincar~ group, Wigner developed a method that was later adapted by
Mackey and other mathematicians to the construction of unitary representations of
other non-compact groups.

Something similar occurred when physicists (Goshen and Lipkin, 1959; Dothan,
Gell-Mann, and Ne’eman, 1965; Bohm and Barut, 1965) tried to generalize the idea
of symmetry and describe spectra of excitations (bands) in hadron and in nuclear
systematics by infinite unitary representations of simple non-compact groups such
as U(6, 6) or SL(3, R). These resemble the spectra of the hydrogen atomic levels --
which they then identified with a representation of U(2, 2), or of the spinning-top
which they identified as SL(4, R), or also of the harmonic oscillator U(1, 3). In
these elementary problems in quantum mechanics, the dynamics are given and one
calculates the spectrum of states as the solutions. In hadrons or nuclei, one
observes the spectrum and the idea was to try and guess from that spectrum what
the dynamics could be. This method became known as the SGA (Spectrum
Generating Algebras).
On the mathematical side, this led to further knowledge about the structure and
classification of such representations. In recent years the method has been further
pursued for nuclei with some success (Axima and Iachello, 1975).

6.2 Infinite algebras

Infinite algebras entered physics in the study of the current algebra of SU(3) or
SU(3) x SU(3), when going over to the algebraic relations between the local
currents of these groups, i.e. the charge and current densities at x or y that interact
with the gauge field at x or y. A search for the representations of such algebras
suffered from complications due to Lorentz invariance considerations (Dashen and
Gell-Mann, 1966). The classification of these representations was nevertheless
achieved (Joseph, 1967).
Meanwhile, a simplified current algebra was being investigated in mathematics
(Kac, 1968; Moody, 1968). As a result of a complicated evolution in the dynamical
theory of the strong interactions, the theory of the quantum string was evolved. It
involved an algebra (Virasoro, 1970) which is isomorphic to the diffeomorphisms
(i.e. the general coordinate transformations as in gravity) on the circle. Its
representations were constructed by the physicists, using the methods of the SGA
we mentioned. It was then shown (Marcus and Sagnotti, 1982) that should one
need to introduce internal symmetries (Paton and Chan, 1969), this would have to
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be limited to certain types of groups (all related to rotations) which, for instance,
could not include U(n) and the observed symmetries.
In the evolution of the Kac-Moody algebras, what was missing was the
representation theory. The method of vertex operators that had been developed by
the physicists for the Virasoro algebra and the corresponding SGA of the string
was now applied (Frenkel and Kac, 1980) to the Kac-Moody algebras.
In 1984, certain very promising features were proved to exist in the string,
strengthening its case as a candidate theory of quantum gravity, to which it had
been switched in the meantime. As a result, a model for the string as a "theory of
everything" (i.e. a unification of gravity with the other interactions) was suggested
(Gross, Harvey, Martinet, and Rohm, 1985). It utilized the technique evolved by
Frenkel and Kac to overcome the limitations on the introduction of internal
symmetries.

6.3 Supergroups, superalgebras, and supermanifolds

Superalgebras were first conceived in mathematics, in the study of algebraic
deformations (Nijenhuis, 1955). Supergroups were also studied leisurely (Berezin
and Kac, 1970). Berezin had in fact considerably advanced the calculus as applied
to systems of anticommuting quantities encountered in the geometry of
Grassmannian differential forms (Berezin, 1966). Through the advent of spinor
particles such as the electron (the spin was identified in 1925) obeying Fermi
(anticommuting) statistics, i.e.a, b -- - b. a, the need for a better understanding of
the algebraic foundations behind anticommuting fields became acute. Berezin
clarified the structure and invented an integration operation for such quantities and
later an appropriate modification of the determinant. The latter was needed for
the treatment of unitarity in local gauge theories, using ghost fields, yet another
important set of anticommuting quantities.
Independently, physicists introduced superalgebras to obtain additional algebraic
constraints (Golfand and Likhtman, 1971). The idea was given a geometric
interpretation (Volkov and Akulov, 1973). Meanwhile, in the study of the quantum
string, the need for further algebraic constraints arose and it turned out that
infinite superalgebras extending the Virasoro algebra could do.precisely what was
needed, i.e. rid the formalism of a tachyonic unphysical state (Le. with imaginary
mass) -- (Neveu and Schwarz, 1971; Ramond, 1971; Aharonov, Casher, and
Susskind, 1971).
The impact of these results was such that the idea of extending the Poincar~ group
into a supergroup was tried (Wess and Zumino, 1974). It seemed elegant and
promising and was given a geometric structure (Salam and Strathdee, 1974). It was
soon noticed that supersymmetry improved the renormalizability of a dynamical
theory. In fact, there are now supersymmetrized gauge theories that suffer no
renormalization, such as a local gauge theory with 4 spin " fermionic and 6 spin 0
bosonic matter fields. Yang-Mills theory were proved to be renormalizable
(’t Hooft, 1971), but in this case the theory is simply finite and requires no
renormalization. This was first shown to be true up to third order in the
perturbative treatment (Grisaru, Rocek, and Siegel, 1980; Avdeev, Tarasov, and
Vladimirov, 1980) and was later proved to all orders (Mandelstam, 1983).
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In a Lie algebra, the algebraic generators obey commutation relations
[F,G] ~- F.G-G.F--H

i.e. the Lie bracket is realized by a commutator -- the difference between the
multiplication of two generators and the inversion in the order among them
(remember that these are non-commutative groups; in Abelian groups this will
yield H m 0). In a Lie superalgebra, there are two types of brackets. All generators
are classified in two classes: bosonic (which is the only possibility in an ordinary
Lie algebra), called even, and fermionic (this is the novelty) called odd. There are
three possible brackets:

[even, evenI ---, even
[even, odd] --~ odd
{odd,odd} --~ even

only the third bracket is an anticommutator
{A, B} = H

A second reason for the interest in supergroups and the constraints they might
impose on the spectrum was (and still is) the absence of dynamical constraints from
the local gauge theory itself with respect to the spontaneous symmetry breaking
Higgs spinless field. This brought about attempts to predict the composition of
appropriate supermultiplets (Fayet, 1976).
A third physical motivation for supersymmetries arose in the attempts at further
unification (gauge unified theories). In these theories, there arises a hierarchy
problem. The symmetry has to be broken spontaneously twice, once at 10~5 GeV, an
extremely high energy (the highest energies presently available in accelerators is of
the order of 10~ GeV). This break separates the strong QCD from the weak +
electromagnetic; then, at around 100 GeV, these two separate as we saw in section
4.2. It was soon found that such a hierarchical sequence was dynamically
impossible: the lower energy would be renormalized automatically upwards, joining
the upper one. It was shown that this result may be more generally true, with
difficulties in understanding how the Higgs field of the SU(2) x U(1) breakdown
does not acquire a very large mass.
As a result interest in supersymmetry has risen. The existence of such constraints
could force the Higgs fields to have vanishingly small masses, like their fermionic
partners in the supersymmetry multiplets: the latter could be required to stay
massless by chiral symmetry. A mass of 100 GeV can be considered as almost zero,
when compared to 1015 to 1019 GeV, and could result from some further symmetry
breaking of the chiral symmetry. Experimentally, the search for the supersymmetric
partners of all the known particles will soon start, when the accelerators will make
it possible to produce particles with masses of the order of 500-1000 GeV.
Now let us turn to the impact on mathematics. When superalgebras started
becoming useful, two main efforts were made by combined "task forces" of
mathematicians and physicists: first, a precise study of the algebraic "rules of the
game" (Corwin, Ne’eman, and Sternberg, 1975), then a rush to discover all possible
simple Lie superalgebras, as Cartan had classified the semi-simple Lie algebras
(Cartan, 1894). After an extensive, but rapid effort (Freund and Kaplansky, 1976),
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the race was won by V. Kac who managed to publish a complete classification (Kac,
1975).
The superalgebra extending the Poincar~ algebra was gauged in a mode resembling
the way in which gauging of the Poincar~ group itself produces Einstein’s gravity.
The result has been the hypothetical theory of supergravity. It supplies a
unification scheme and a certain reduction in the difficulties in the renormalization
of gravity (but apparently insufficient for the removal of all difficulties).

6.4 Algebraic geometry and topology

Perhaps the greatest impact on mathematics coming from the advances in physics
in recent years has been in the areas of differential and algebraic geometry and in
topology.
While physicists such as C.N. Yang and R. Mills, Shaw, Utiyama and others were
developing the idea of a gauge theory, mathematicians were inventing and studying
precisely the same structure under the name of fiber bundle manifolds (Whitney,
1935; Hopf, 1935; Stiefel, 1936; Chern, 1944; Pontryagin, 1944).
A fiber bundle manifold ~(M, G, F, ~r, .) is constituted by a base manifoldM (think
of spacetime in a Yang-Mills internal symmetry gauge), a structure group G (the
gauged Lie group), afiber F (the representation of the matter fields), aprojection ~r
(such that when it acts on a point p in the fiber F it yields the point x in M
underneath that F(x) ), and an action of G upon the entire bundle which we shall
not discuss here. The bundle is precisely the same thing as our gauge theory, but it
is a geometric object! The gauge field with its compensation role is called in
differential geometry a connection, etc.
Physicists discovered in the late sixties that the mathematicians "had already been
there" (Lubkin, 1963; Loos, 1967; Wu and Yang, 1975). However, it was only after
the renormalization of the Yang-Mills theory (’t Hoofl, 1971a), including the case
of spontaneous symmetry breakdown (’t Hoofl, 1971b) and its adoption for QCD
and for the weak force that physicists started looking for (quantum) solutions of
the Yang-Mills equations. They discovered monopoles (’t Hoofl, 1974; Polyakov,
1974), instantons (Polyakov, 1975; ’t Hooft, 1976), merons, etc. which were
important for the understanding of the theory’s predictions in physics - but to the
mathematicians they opened new fields (Atiyah, Hitchin, and Singer, 1977).
Two areas of mathematics that have been boosted by these results are the study of
3- and 4-dimensional manifolds and index theorems.
The 2-dimensional manifolds were classified long ago, and in fact that classification
has been extensively used by physicists who work on the string between 1984-87
(Nelson, 1987), including results about moduli of Riemann surfaces, Teichmuller
spaces, modular invariance, etc. This was due to the fact that a one-dimensional
string maps a 2-dimensional "world sheet" in its time-evolution, and the
applications to the calculations imply a summation over all possible (topologically
different) two-spaces, i.e. ~urfaces of different genus. Indeed, the classification says
that all two-spaces can be stretched and deformed to form a sphere, or a sphere
with a "handle’, or a sphere with two handles, etc. and that this is the full
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classification. The theory becomes more useful when working on complex spaces
instead of real 2-surfaces.
Between 1982 and 1985, great advances were made in the understanding and the
classification of 4- and 3-dimensional manifolds, a great open problem in topology
(Freedman, 1982; Donaldson, 1983). Donaldson’s results were very much
influenced by the Yang-Mills solutions that physics had brought to light. For five
dimensions and above, the situation is very simple and has been understood for
some time. The 4-dimensional picture was a surprise. It revealed the existence of
an uncountable infinity of different "exotic" spaces. The application of physics --
quantum field theory -- approaches has been pursued and is yielding very
important results in the study of 3 dimensions as well (Floer, 1988; Witten, 1988)
A related problem is the index theorem. This is a method that probes the global
structure of a manifold at its deepest. It exploits spinorial structures and relates to
the Dirac equation. The index theorem (Atiyah and Singer, 1963) is directly
related to these instanton solutions of the Yang-Mills equations and to
supersymmetry, and here again, much progress has been achieved in recent years,
using the insight provided by physics.
Summing up, we have seen in recent years a great mutual fertilization between
physics and mathematics in the area of local gauge symmetry and topology.
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