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QUESTION 1

what is
symmetry?

Within mathematics the concept of symmetry is ubiquitous.

Perhaps more so in algebra and geometry than elsewhere, but in all branches of
mathematics there have been practitioners who were particularly guided by the
symmetry principle. In its simplest form, "twofold symmetry", this principle is
expressed throughout mathematics by such words as "duality” or "complement”, or
even "if and only if". All mathematicians are familiar with the duality, and comple-
mentation, expressed in the laws of Boolean algebra which govern, for example, the

unions and intersections of sets:

AUB)NC=(ANC)UBNC),
ANB)UC=(4UC)NBUC),
ANBY=A4UB,
(AUBy =A4'NB.
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The appeal of these simple laws is certainly in large part due to their symmetry.

As has been pointed out by H. S. M. Coxeter (1948, pp. 162-163, 258-259) there can
be little doubt that this instinctive search for, and response to, symmetry was
inherited from George Boole by his daughter, Alicia Boole Stott. Coxeter tells us
that as a young woman Alicia Boole was taught the rudiments of four-dimensional
geometry by that Howard Hinton who later became known for his mystical books
on higher space. In later years she determined, using only synthetic methods, the
entire sequence of cross-sections of the regular four-dimensional polytopes. This
led to a collaboration with P. H. Schoute, a skilled professional mathematician who
had determined only the middie one of her sequence of sections by more orthodox
analytic methods. At the age of 70 she was introduced to Coxeter with whom she
collaborated on the study of a four-dimensional polytope he was investigating at
the time. It is unimaginable that she accomplished all this work on regular (i.e.
highly symmetric) polytopes, with no formal training in mathematics, except by the
use of a powerful instinctive sense of symmetry.

In the foundations of geometry, the incomplete duality between the Euclidean
axioms of plane geometry,

Two points determine a unique line,
and
Two lines determine a unique point, except when they are parallel,

leads to a formulation of the completely dual axioms for projective geometry.
Projective geometry has been recognized since its invention as a particularly
beautiful branch of mathematics, exactly because this duality, i.e. symmetry,
between point and line (point and plane in space) does not need to be qualified by
the exceptions which render it imperfect in Euclidean geometry.

Also, in the foundations of geometry, it has been suggested (Heath, 1956, vol. 1,
p- 202) that the millenia-long search for a proof of Euclid’s "parallel postulate” was
motivated in part by the expectation of a symmetry between a theorem and its con-
verse in geometry. The parallel postulate is equivalent to Euclid’s Proposition 1.29,
"If two parallel lines are cut by a transversal, then the alternate interior angles are
equal”. Now, the converse to this proposition, "If two lines are cut by a transversal
in such a way that the alternate interior angles are equal, then the two lines are
parallel,” was known to be true. (It is essentially the content of Proposition 1.28,
which immediately precedes 1.29 in Euclid.) In Euclid’s treatise, many facts
occurred in theorem — converse theorem pairs. For example,

1.5: If two sides of a triangle are equal then their opposite angles are equal,
is followed immediately by its converse,
L.6: If two angles of a triangle are equal then their opposite sides are equal.

Such examples, combined with the complexity of the statement of the parallel pos-
tulate, led some commentators on Euclid’s Elements to urge that it should be
"struck out of the Postulates altogether; for it is a theorem involving many difficul-
ties” (Heath, 1956). In this way the expected theorem—converse symmetry con-
tributed to the persistent search for a proof of 1.29, a search which culminated in
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the discovery of non-Euclidean geometries by Bolyai and Lobachevskii in the early
nineteenth century. It is a commonplace now that this discovery is one of the most
revolutionary in the history of thought because of its revelation of the indepen-
dence of our mathematical model-making from any actual physical universe. This
freedom led to the possibility of new models, such as relativity, to describe aspects
of the universe unthought of by minds tied to the view that the human brain is
constrained by its very construction to think only in the Euclidean way. It is inter-
esting to speculate that this revolutionary development stems in part from the
(misguided?) search for theorem—converse symmetry in Euclid’s Elements!

Turning to more intricate manifestations of symmetry in geometry than the simple
twofold symmetry of the preceding influential examples, the most familiar instance
is probably that of the regular polyhedra and related highly symmetric structures.
Recall that Euclid begins his Elernents with the construction of the simplest of reg-
ular figures, the equilateral triangle (Proposition 1.1), and concludes, nearly at the
end of Book XIII, with the construction of the most complicated of the regular
polyhedra, the icosahedron and dodecahedron (Propositions XIIL16,17). Appar-
ently Proclus already suggested that this showed that the geometric purpose of the
Elements was to provide a treatise on the construction of regular figures. In his own
treatise on Regular Polytopes, Coxeter (1948, p. 13) reports that D’Arcy Thompson
repeated this opinion to him.

Without believing that this is an entirely accurate characterization of Euclid’s work,
we still recognize the fundamental significance of these most symmetric figures
throughout mathematics and science. As Marjorie Senechal recently put it: "Today
we believe that it is not the classical form of the regular polyhedra that is signifi-
cant: instead it is the high degree of order which they represent” (Senechal and
Fleck, 1988). It is only necessary to mention Felix Klein’s book Lectures on the
Icosahedron to remind a mathematician of the unifying role of polyhedral symme-
try, in the guise of group theory, in treating problems in analysis.

Group theory itself is, in one of its main aspects, the study of permutation groups
or transformation groups, that is, the study of the symmetries of various mathe-

- matical or real-world objects. Even in "abstract” group theory, where the groups
studied are not initially groups of symmetries of any particular mathematical
objects, one of the main problems is often to find some such object on which the
abstract group acts in a natural way as the group of all symmetries. In particular,
now that the enumeration of the finite simple groups has been completed, much
effort is being spent to understand them by creating more or less natural geometric
objects whose symmetries are described by the new simple groups.

At a still deeper level, an interesting program was suggested, and partially carried
out, by L. Fejes Toth in his book Regular Figures (1964). He started from the obser-
vation that "extremum postulates often involve regularity”. (Here by "regularity” he
means "symmetry".) That is, "regular arrangements are generated from unarranged,
chaotic sets by the ordering effect of an economy principle, in the widest sense of the
word". Several such results are well-known. For example, among all polygons hav-
ing a given perimeter and a given number of edges, the regular (that is, the most
symmetric) polygon has the maximum area. Likewise, if we ask for the densest
packing of congruent circles in the plane, the answer is the regular arrangement of
circles at the centers of the cells of a hexagonal honeycomb.
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In space such problems are much harder. If we ask for the convex polyhedron of
maximum volume, having a given surface area and given number f of faces, the
answer is known to be the regular polyhedron with f faces if f = 4, 6, or 12. How-
ever, it has apparently not even yet been proved that the analogous question for
polyhedra having 6 vertices is answered by the regular octahedron. An intriguing
problem of this type, introduced by the biologist Tammes, is that of the optimal
arrangement of orifices, or spines, on pollen grains. A proposed arrangement of
122 points on a sphere, derived from the regular icosahedron, was shown by Fejes
Té6th (1964, pp. 232-233) not be optimal. Could it be that the (approximately) 122
spines on the pollen grain in Figure 1.1 constitute a solution to the optimization
problem for 122 pomts" A brief discussion, with recent refenences, of these and
similar problems is given by Fejes T6th (1986)

. Figure 1.1: Pollen grain of Hibiscus.
(Scanning Electron Micrograph by Joan W. Nowicke, SmithsonianInstitution.)

To conclude this section I describe a famous example of a possible application of
Fejes T6th’s program (not mentioned explicitly by him). This is the attempt, over
more than a hundred years, to explain the regular arrangement of leaves around a
stem in growing plants, or the apparently similar regular spiral arrangement of the
florets in the heads of daisy-like flowers. Such an arrangement is most easily seen
on a giant sunflower, where the numbers of spirals visible in two directions on the
head are very often adjacent numbers of the Fibonacci sequence

{i} =1,1,2,3,5,8,13,21, 34, 55, 89, 144, 233, ...

The photograph in Figure 1.2 shows a sunflower in which the numbers of spirals in
the two directions are 55 and 89, a typical pair for large sunflowers. The purely
mathematical properties of this sequence have been extensively studied since its
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introduction by Fibonacci in the 13th Century. The sequence is connected to
aesthetic theory by the fact that the ratio of adjacent terms approaches the "golden
ratio”, ¢ = (1 + v3)/2 = 1.618.. ., which has been widely considered to be espe-
cially attractive. (Hence the prevalence of 3x5 and 5x8 notecards in America.)

Figure 1.2: Sunflower. The number of spirals in one direction is 55: in the other it is 89. These constitute
a Fibonacci pair.

Over the years many explanations have been proposed for the occurrence of such
number pairs in plant growth, none of them completely satisfactory. The most
recent ones imagine the plant is "trying" to apply some economy principle, such as to
maximize the share of light received by each leaf, or to minimize the physical
crowding of one floret by the next. Although other, perhaps chemical, mechanisms
have been proposed as the means by which the plant carries out its "desires", there
are aspects of the theory in which purely mathematical consequences of suitable
economy principles lead to the observed symmetric spiral arrangements. A brief
description, which owes much to the text and illustrations of Jean (1984), Marzec
and Kappraff (1983), Dixon (1981), and Stevens (1974), of such a mathematical
model which yields the observed shape and number of spirals with convincing accu-
racy follows. [See also the article "Symmetry in phyllotaxis" by Irving Adler in this
issue — Eds.]

It has been well documented that the florets (which later become the seeds) are laid
down successively along 3 Jogarithmic "growth spiral” whose equation in polar co-
ordinates (,0) is r = (Marzec and Kappraff, 1983, p. 205-207). This is also
called an "equiangular spiral” because it is the locus of points (r,6) such that at any
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point the radius vector makes a constant angle with the tangent vector at that
point. The constant angle is A, where cotA4 = k. Thus if 4 = 90° we have k=0
and the equation becomes 7 = 1, which is a circle of radius 1. If £ > 0 is very near
to .0 then A is very near to 90° in this case the spiral is tightly wound around the
origin — almost a circle.

It also seems that the florets are laid down at equal intervals along such a spiral, i.e.
at points (r,8) where @ successively takes on the values «, 2a, 3w, ..., for some
fixed angle «. We want to apply a suitable economy principle to determine a.
Since the angles «, 2a, 3a, ... can be represented as points (1,a), (1,20x),
(1, 3a), ..., on the unit circle, such an economy principle is one which will ensure
that the first n of these points are "equally distributed” around this circle. (This is a
mathematical version of the biological requirement that all florets should have
equal access to the sunlight, or that later ones should not physically crowd any of
those already laid down.) At first glance, a reasonable such principle seems to be:

First Attempt: For each n, the number of different lengths among the n arcs into
which the n points (1,«a), (1,2«), (1,3«a), ... (1,na) divide the circle is
minimized.

For if, among the n arcs, there are many different lengths, then some points are
bunched together and others are not. However, it is a remarkable, though simple,
fact (the truth of which the reader can readlly verify experimentally by moving a
paper angle around a circle) that:

For each choice of angle a the number of different lengths among the n' arcs into
which the points (1, @), (1, 2a), (1,3«), ..., (1,na) divide their circle is never
greater than three. ‘

Thus this first attempt is useless as a criterion for selectmg one « instead of
another. We discard it.

A slight modification is much more successful. Note first that if n — 1 of the points
have already been placed around the circle then the nth point divides one of the
n—1 arcs into two parts. (Of course we are assuming that « is an irrational mul-
tiple of 360° otherwise two points will eventually coincide.) It would seem desir-
able that it should divide this arc into nearly equal parts. We say that the point
(1,na) causes a "bad break" if one of the two arcs it creates is more than twice the
length of the other. The appropriate economy principle is that no bad break occurs,
that is, NBB Economy Principle: For each n, the point (1,na) does not cause a
"bad break” in the arc in which it appears.

An astonishing combination of beauty and function is expressed by the unexpected
mathematical fact,

Theorem (Knuth, 1973, p. 543): The only value of « for which NBB is satisfied is
360°/<p = 137.5° (or its mn:)gjement, 360° - 360°/¢2, which is just 360°/¢), where
¢ is the golden ratio, (1 + v5)/2.

Thus, for purely mathematical reasons, a plant might "choose” the angle 137.5° for
laymg down successive florets, or, in the case of leaf growth, for laying down succes-
sive leaves around a stem. There is considerable documentary evidence for the
actual occurrence of just this angle.
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Now, assuming that points are placed on a tight logarithmic spiral at equal intervals
of 360°/¢2, what would be seen by the human eye? The eye does not see the origi-
nal spiral, because it is so tightly wound, but sees certain "secondary” spirals. These
are the ones seen in the sunflower photo in Figure 1.2. A simple computer drawing
shows vividly how this can happen. In the example of Figure 1.3 some 750 points
have been plotted at intervals of 360°/p? along the curve r = eko, with k = 1/800.
It is a simple matter to count the spirals and see that there are 21 in one direction
and 34 :in the other direction. To obtain the numbers 55 and 89 'seen in Figure
1.2 it is only necessary to choose a still smaller value of k, i.e. a still more tightly
wound logarithmic spiral.

Figure 1.3: Points equally spaced along the logarithmic spiral r = P (k = 1/800) at intervals of
360°/p? appear to form 21 secondary spirals in one direction and 34 in the other.

QUESTION 2

Many examples of the interdisciplinary impact of geometric :,jg/_\:";z\

symmetry are comparatively well-known. Of these, one of

the most striking is the story of the artist M. C. Escher who found, in an illustration
from a paper by the geometer H. S. M. Coxeter, the solution to an artistic problem.
As he explained in a 1958 letter to Coxeter (Coxeter, 1979), he had for a long time
been interested in patterns containing motifs which kept getting smaller and
smaller. He had solved the problem of creating such patterns when the small motifs
approached a single point at the center of the pattern, as in his 1939 print Deve!-
opment II and the 1956 print Smaller and Smaller (Ernst, 1976, pp. 102-103). He
had even made such patterns where the motifs became smaller and smaller toward
a line limit. However, he had never been able to make a pattern whose motifs grew
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smaller towards an outside circle which would form a natural artistic boundary for
his print. But in the copy of Coxeter’s paper for a Canadian Symmetry Symposium
(Coxeter, 1957), sent to him by Coxeter, he saw an illustration of the symmetry
group [4,6] in the non-Euclidean hyperbolic plane which was exactly the inspiration
he needed. He enclosed with the letter a copy of his Circle Limit I, based on this
[4,6], and later made the famous Angels and Devils (Circle Limit IV) based on the
same illustration. When he learned that there were infinitely many other symmetry
groups which should serve the same purpose he used one of them, {3,8], as the basis
for the two other Circle Limit prints, IT and I11. ‘

An even better-known example of such an interplay between geometric symmetry
and the rest of the world is the famous Rubik’s Cube. Here was a toy, originally
devised by Ern6 Rubik to illustrate symmetry principles in a particularly concrete
fashion, whose popularity swept the world in a way not seen since the "15 Puzzle”,
also based on symmetries (odd and even permutations) many decades earlier.

Of the hundreds of other, less well-known, examples, let me choose two which are
quite different from each other. The first is a result of the researches of the archae-
ologist, Dorothy Washburn. Early in her career she was confronted with the prob-
lem of analyzing a collection of pottery in the Peabody museum of Harvard Univer-
sity. This pottery had been collected from well-documented sites in the Upper Gila
River in what is now New Mexico. As she reported it to me, she began by using one
of the conventional tools of pottery analysis, "typology", which had been particu-
larly carefully developed for this heavily studied area of the Southwest USA. How-
ever, each morning when she returned to work on the classifications she had pro-
duced in the preceding day she found that she could no longer remember why pot x
had been assigned type y. Not only would it be difficult for subsequent investiga-
tors to duplicate her "scientific” conclusions, but she herself could not confirm her
own previous day’s work after a 12 hour time lapse!

In this context she asked herself whether some truly objective attribute could be
found for pottery so that today’s classification would still stand up to tomorrow’s
scrutiny. Symmetry turned out to be just such an attribute. Most of the pottery in
question was decorated, either with finite designs (often with rotational symmetry),
one-dimensional designs ("bands"), or two-dimensijonal designs having a variety of
symmetries. She extended the earlier ideas of Brainerd (1942) and Shepard (1948)
by incorporating the two-color symmetry classification of the textile scientist H. J.
Woods (1935-36). In this way she developed a suitable tool for the study not only of
patterned pottery, but of patterned material of any type (Washburn, 1977).

Without knowing it at the time, Washburn had thereby repeated some of the work
of crystallographers such as Belov and Tarkhova (1964), but in a context more
directly suitable for use by archaeologists, anthropologists, and art historians. A
systematic treatment of this method of symmetry analysis, incorporating the rela-
tively standardized crystallographic notation, presented specifically for the study of
patterned material of any kind is found in a more recent monograph (Washburn
and Crowe, 1988).

To see how this symmetry tool could be applied, we look at an example suggested
by Washburn herself. In Chaco Canyon, in what is now New Mexico, USA, there
are dozens of impressive ruins, one of which is shown in Figure 2.1. At first glance
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these ruins, each containing many separate rooms, appear to have been inhabited
by a large number of people. However, Chaco Canyon is extremely hot and dry, and
evidence suggests that it was not much different when it was still inhabited, some
700-800 years ago. When archaeologists first became aware of these ruins, about
100 years ago, the apartment houses and "skyscrapers" of New York were the talk
of the world. Thus it is not surprising that archaeological opinion of that time, and
for many years afterward, estimated a huge population for Chaco Canyon, in spite
of the obvious difficulties of living in such inhospitable country.

Figure 2.1: A portion of the ruins of Chaco Canyon as they appear today.

As archaeology became aware of the fact that there are many other, smaller, sites in
the general vicinity of Chaco Canyon (and as the marvels of American culture came
to be the "shopping malls" instead of skyscrapers) a new possibility presented itself.
Perhaps the buildings of Chaco Canyon were not really densely inhabited, but were
mainly the store rooms of a vast "shopping center”, which was the center of a broad
trade area. The fact that the pottery g)und in the Chaco outliers was much like the
pottery of Chaco itself (see Figure 2.2) was consistent with this idea.

In collaboration with a statistician (Washburn and Mattson, 1985) Washburn com-
piled information about the relative frequency of occurrence of symmetry types
(which she had already developed for her earlier study) of patterns found on pot-
tery at the various sites in and around Chaco Canyon. If indeed these sites were in
constant communication and trade with each other, it is a reasonable hypothesis
that two sites with similar distributions of pattern types were close together,
whereas those which have dissimilar distributions of pattern types were farther
apart geographically. Using this hypothesis, she used “multidimensional scaling® to
make a map of the various sites so that their distances from each other best agreed
with the percentage correspondences between pattern types. And, indeed, this
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mathematical map agreed in a general way
with the actual known location of the sites
round Chaco Canyon.

However, it is the disagreements which are
the most instructive, since they suggest
directions for further investigation. The two
most notable disagreements are for Salmon
Ruin, which appears on the mathematical
map far to the east of its true geographical
position; and for a group of three sites
south of Chaco Canyon which appear, on
the mathematical map, scattered to the
north of Chaco. What are the cultural rea-
sons for these anomalies? Such a question
suggests further research to the archaeolo-
gist. In the case of Salmon Ruin, it is natu-
ral to imagine that its location between
Chaco Canyon and the important centers at
Mesa Verde led to a mixture of design
styles which made it appear farther from
Chaco than it really is. For the other three
sites, the answer is not so obvious. Perhaps
the fact that the actual location of these three sites was quite separate (farther
south) from the other sites meant that the hypothesis of constant cultural trade and
communication is not valid for them. In any case, the study of symmetry has
suggested specific sites to which the archaeologist might give further attention to
determine what particular aspects of culture contributed to these discrepancies.

Figure 2.2: Typical Chaco Canyon pitcher
(from Pueblo Bonito, Chaco Canyon).

My second example is very different. It represents the combined work of a mathe-
matician, W. F. Orr, and a professor of French, C. W. Carroll. It began with the
observation that one of the oldest of French verse forms, the Provencal sestina, was
based not on rhyme, but on a symmetrical rearrangement of the final words of each
line. More specifically, the sestina form consists of six stanzas of six lines each, fol-
lowed by three final lines. The six final words of the six lines of stanza one are per-
muted to reappear as the final words of the six lines of stanza two. Applying the
same permutation yields the final words of stanza three, and so on, in such a way
that the same permutation takes the final words of stanza six back to the original
order of stanza one. (Moreover these same six words occur in the three culminating
lines of the sestina, in the same order as in the first stanza. In the present
description, however, these three lines will be ignored.)

The oldest known sestina, and the one whose analysis led to the formulation of the
general rule of construction, is the late 12th Century "Lo ferm voler”, by Arnaut
Daniel. It is reprinted in Carroll and Orr (1975). Two modern sestinas, "Paysage
moralisé¢” and "Have a good time", were composed by the English poet W, H. Au-
den. ("Paysage moralisé” appears in the collection by Williams, 1951, pp. 750-751.)

The actual permutation used in Arnaut Daniel’s sestina is P = (163542). The liter-
ary name for it is refrogradatio cruciata ("crossed-reverse™); it leads to the spiral pat-
tern in Figure 2.3 when P(1), P(2), ..., P(6) are connected in order. Asa
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generalization of the sestina, the French author
Raymond Queneau, known for his applications of

mathematics to literature, suggested the problem: 1
"For which » can an n-ina exist?", and appar-
ently answered that question for n < 100. 2

Orr and Carroll made this more precise by defin-
ing a spiral permutation P on the n symbols

ng 2 spirl 0

Py =r, 1<2r<n,
Pr+1)=n-r, 1s2r+1=<n.

4-Y)

An n-ina exists, by definition, if this permutation 5

is cyclic. Their complete result, which contains

Quenecau’s previously obtained results, is the 6

Theorem (Carroll and Orr, 1975): An n-ina exists

ifand only if Figure 2.3: The spiral symmetry
: of the sestina.

(i) 2n + 1 is a prime, p, and
(ii) either +2 or -2 is a gencrator of the multiplicative group of the finite
ficld of p elements.

For example, in the range 3 < n < 20, the values 3,5,6,8,9, 11, 14, 15, 18, 20
satisfy condition (i). Of these, 8,15, and 20 do not satisfy condition (ii). Thus for
3 < n =< 20, an n-ina can exist exactly when n = 3,5,6,9, 11, 14, or 18,

Surely this is a remarkable instance of an occurrence of symmetry in the world of
literature which inspired a purely mathematical investigation and theorem!

QUESTION 3 :
. DU . fymmetry
What is the origin, in my own life and cultural background,
of a continuing interest in symmetry and pattern? Are there
any particular events or experiences which formed this interest?

Kh. S. Mamedov (1986, pp. 512-514) has related what in retrospect seems a
dramatic contrast that aroused his curiosity about the prevalence of symmetry. He
observed that in his early nomadic life the decorative objects of that culture were
geometric (i.e. symmetric); on the other hand the nomads’ physical surroundings
were "a wonderful kingdom of various curved lines and forms". But when he moved
to town to go to school he found the opposite to be true. The townspeople’s physi-
cal environment was predominantly straight-line geometry; in contrast the decora-
tive objects they chose were less symmetric, more ornate and curvilinear.

T can claim no such picturesque background to my later personal perceptions of
symmetry and duality. Perhaps the austerity of a Nebraska childhood in the Great
Depression, and the dryness of the climate in the Dust Bowl of the 1930’s had an
influence, but the connection is not quite apparent to me now, and certainly was
not apparent to me then. I didn’t know until later that I was living through a
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Depression, and thought the hot dry winds were just a constant feature of Nebraska
life.

Four particular memories from my 1930’s childhood suggest the beginnings of a
career in geometry and symmetry. The first was a sort of game which someone
bought me, consisting of a 10 inch square board with some 400 round indentations
(the integer points of a Cartesian coordinate system?), and several hundred small
clay "marbles” in a variety of solid colors. With these marbles placed in the indenta-
tions a colored design could be produced. Today this scems like an exact precursor
of a color computer monitor screen with its pixels which can be lit up to make col-
ored designs on the screen, but of course this was long before the advent of elec-
tronic computers, or even ordinary television screens. In the 1960’s I worked for a
time on finite geometries, and at that time I always felt a direct connection between
the kinds of pictures one draws to illustrate finite affine geometries and the
pictures I plotted, as a child, on this marble picture board.

I also had a small loom on which I made beadwork "watchfobs”, belt decorations,
and the like in the style of some American Indian beadwork. In retrospect these
beads were also the points of a finite geometry. Other visual images of this same
type came from the game boards for the game of "Chinese checkers”, played with
marbles on an indented board much like my "pixcl board”, but placed in a hexago-
nal, rather than square, array whose boundary is a star hexagon. Of course the uni-
versal game of tic-tac-toe was also played in Nebraska. Its nine cells naturally corre-
spond to the nine points of the finite affine geometry having three points per line,
and the much desired three in a row is one of the lines of that geometry. .

My second example is a sxmpler one. No

claborate  commercial 'aids' were

required to while away the time in ele-

mentary school classrooms by trying to

trace out an Euler circuit on the net-

work shown in Figure 3.1!' (An Euler

path is a path containing each edge of

the network exactly once. It is an Euler

circuit if it ends at:its starting point.)

Most of us discovered fairly soon that if

one of the diagonals was left out, or one

of the outside loops, then we could find

an Euler path. But so far as I know none

of us ever realized just why. We were a

long way from discovering Euler’s result

_ ‘that such a path could be traversed if

Figure .1: A problem from childhood: Draw this figere  and only if there were exactly two (or

without lifting the pencil from the paper, or redrawing any line. no) vertices of odd degree Indeed the

whole idea of "generalization" was foreign to us. We were only interested in this

particular network, and never considered the possibility of devising other similar

puzzles which mlght lead us to a general solution. Certainly we never imagined

such beautiful and elaborate networks as the sand drawings of the Tchokwe people

of Angola (Gerdes, 1988, 1990; Ascher, 1988b), or the nitus from the island of

Malekula in Vanuatu (Ascher, l988a) Figures 3.2 and 3.3 show turtles drawn by
the Tchokwe and on Malekula, respectively.
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Figure 3.2: Tchokwe sand drawing Figure 3.3: Turtle, as drawn on the island
of a turtle (Gerdes, 1988, p. 8) of Malekula, Vanuatu (Ascher, 1988a, p. 216)

There was, however, something about the symmetry of Figure 3.1 which appealed
to us. Although the deletion of one arc to make it traversable might have made it
still more appealing because of the subsequent availability of an Euler path, the re-
sulting decrease in symmetry made it entirely unacceptable. Incidentally, I don’t re-
call that we ever distinguished between an Euler path and an Euler circuit. Since it
was only a pencil and paper problem it was a matter of indifference to us whether
the path returned "home" to complete a circuit or not.

The third of these early symmetry influences was the image of long rows of upright
cornstalks in cornfields on the flat Nebraska steppes. These were a common sight
as we passed by in an automobile following the Platte River to visit relatives in
Colorado. Of course, the cornficlds had been planted in straight rows by tractors,
these rows often being perpendicular to the direction of the highway. But I always
noticed that "rows" were visible in many directions, not just at right angles to the
highway, but at 45° angles, and others as well, with the angles varying depending
on my line of sight through the field. In fact, T had a certain reputation for
"squinting” when I thought no one was looking; I was only sighting along those un-
planned rows of corn to confirm that the cornstalks really lined up.

The effect is the same as. that of the regularly placed marbles on their board (in my
first example), except that now the scene is viewed not vertically from above the
board (cornfield), but horizontally, from the same level as the board. This experi-
ence, thus, was not a precursor of a study of finite geometries, but of the problem
known as "Sylvester’s Problem". This problem was originally formulated by
Sylvester (1893) in terms of orchards (a comparative rarity in Nebraska at that
time), not cornfields. In the interest of symmetry, he asked whether it is possible to
plant the trees in an orchard so that they are all in rows, that is, so that any straight
line ("row") containing two trees also contains at least one other tree.
Sylvester’sproblem fascinated me from the first time I heard of it, and the mental
picture I used to describe it was always in terms of cornfields. After Gallai proved
that the answer to the original question in "no", one revision of the problem was to
determine the minimum number of "short rows" (containing only two trees) in an
orchard of n trees. My small contribution to that problem was made in a paper
(Crowe and McKee, 1968).
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When I was about 13, I found instructions in a boys’ How To Do It book for making
a "Tower of Hanoi" puzzle. This, my fourth example, is known to everyone nowa-
days, because it is a favorite recursion exercise in beginning computer programming
courses. It consists of three pegs, on one of which is placed a "tower” formed of n
disks of decreasing size. The puzzle is to move the disks from one peg to another,
one at a time, and thus transfer the tower to another peg, never placing a larger
disk on a smaller in the process.

Figure 3.4 The Tower of Hanoi puzzle.

I don’t think I realized then that the minimum number of moves required for a
solution was 27 - 1, but I certainly realized that the kinetic symmetry and hypnotic
monotony of the process of solution was very soothing and relaxing. This feature of
the Tower still makes it more appealing to me than the "Chinese Rings" puzzle,
which is almost equivalent from the purely mathematical point of view.

The fact that there was a direct connection between a simplest solution to the
Tower and a particularly symmetric Hamilton circuit (that is, a circuit which con-
tains each vertex exactly once) on the n-dimensional cube only became obvious to
me when I was a beginning graduate student. That discovery became my first pub-
lished paper (Crowe, 1956), and the wooden Tower I built at age 13 is used for lec-
ture demonstrations to this day.
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