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SYMMETRY IN PHYLLOTAXIS

Irving Adler

Educator, mathematician, author, (b. New York, N.Y.,
US.A, 1913).

Address: RR1, Box 532, North Bennington, VT 05257,
US.A.

Field of Interest: Phyllotaxis.

Awards: Award for "Outstanding Contributions to
Children’s Literature" by the New York State Association
for Supervision and Curriculum Development, 1961;
Award for writing "Outstanding Science Books for
Children" by the National Science Teachers Association
and the Childrens Book Council, 1972, 1975, 1980.
Publications: A model of contact pressure in phyllotaxis,
Journal of Theoretical Biology, 45 (1974), 1-79; A model of
space filling in phyllotaxis, Journal of Theoretical Biology,
53 (1975), 435-444; The consequences of contact pressure
in phyllotaxis, Journal of Theoretical Biology, 65 (1977), 29-
77; An application of the contact pressure model of
phyllotaxis to the close packing of spheres around a
cylinder in biological fine structure, Journal of Theoretical
Biology, 67 (1977), 447-458; Plant spirals and Fibonacci
numbers: A mathematical gold mine, Mathematical Medley,
12 (1984), 29-41.

QUESTION 1

Figure 1: Conspicuous

On a pineapple farm near Brisbane, Aus-
tralia there is a one-story building
intended to look like a giant pineapple. It shows clearly that a
pineapple is like a living crystal: the closely packed florets on its
surface are arranged in two intersecting sets of parallel spirals.
One set goes up to the right. The other set goes up to the left. The
architect who designed the building was aware of the fact that
there is symmetry in the arrangement of the florets, since he had
put 13 spirals into each of the sets, and both sets of spirals made
the same angle with the ground. However, the symmetry he gave
his pineapple building is wrong. In a real pineapple, the two sets

what is
symmet

spirals on a pineapple.  Of conspicuous spirals do not have equal numbers of spirals. In a
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(b) A brief note in Nature (Frey-Wissling, 1954) pointed out that divergence angles
in a polypeptide chain are analogous to divergence angles in phyllotaxis, and can be
derived from the sequence 1, 3, 4, 7, ... which is generated by the same recurrence
relation as that which generates the Fibonacci sequence if you begin with 1,3
instead of 1, 2. "The similarity”, he said, "is certainly due to the same geometric
cause, that is, as dense as possible an arrangement of identical objects along a
helix". Erickson (1973) pursued this idea further and proposed the use of concepts
and terminology of phyllotaxis to describe microscopic biological structures that
are assembled from protein monomers in helical arrangements like those displayed
by the close packing of equal spheres around a cylindrical surface. Using these con-
cepts borrowed from phyllotaxis, he showed how the parameters of these structures
can be calculated from observed data. He used two methods employing the nota-
tion and equations of Van Iterson (1907). The first method was based on using for
the distance between the centers of two neighboring spheres the length of the
straight line-segment that joins them. This method leads to transcendental equa-
tions that can be solved by an iterative procedure. In the second method, he used
for the distance between the centers of two neighboring spheres the length of the
helical arc that joins them on the cylindrical surface that contains them. This
method leads to simple algebraic equations that are solved more directly than the
transcendental equations of the first method and provides solutions that are close
approximations to those obtained by the first method. The equations Erickson used
in the second method, however, apply only to the triple-contact case (hexagonal
packing). In 1977 I showed how this method could be made more general, so that it
would be applicable to both the triple-contact case and the double-contact case
(thombic packing) (Adler, 1977b) by using the equations derived in my contact-
pressure model of phyllotaxis (Adler 1974, 1977a).

(c) The study of phyllotaxis has had an important impact on the teaching of math-
ematics. Counting the spirals on a pineapple, a pine cone, or a sunflower , and dis-
covering that the numbers obtained are consecutive terms of the Fibonacci
sequence immediately arouses student interest in this sequence. As I have pointed
out in talks to teachers in the United States, Australia, New Zealand, Hong Kong,
Singapore, and Malaysia (Adler, 1984), introducing young people to the Fibonacci
numbers opens the door to a host of mathematical concepts, with some suitable for
every grade level. These numbers are joined by many threads to the rest of the fab-
ric of modern mathematics. Here is a list of some of the subjects entered if the
threads are followed: theory of limits, linear algebra (determinants and matrices,
modules and vector spaces, spectral theory), theory of rings and fields, theory of
numbers (Diophantine equations, congruences, continued fractions, theory of
primes), differential equations, theory of linear recurrence relations, combinatorial
analysis, and theory of functions of a complex variable.

The Fibonacci numbers also provide students with many opportunities to make
their own discoveries. For example, even students in the elementary grades can dis-
cover for themselves the formula for the sum of the first n consecutive Fibonacci
numbers, and the formula that, for any three consecutive Fibonacci numbers, con-
nects the product of the first and third number to the square of the middle number.
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decreases, this vertical component becomes negligible. Then a lattice point with a
high lattice number can become the point nearest 0 if the horizontal component of
its distance is small. If m and n are the lattice points nearest to O on the left and
right respectively, then the opposed parastichy pair (m, n) is called conspicuous. It
can be proved that a conspicuous opposed parastichy pair is necessarily visible
(Adler, 1984, letter to Roger Jean). The significance of these distinctions is this: the
divergence angle d determines which opposed parastichy pairs are visible, and vice
versa, in a manner explained in the next paragraph, and, for a given value of d it is r
that determines which visible opposed parastichy pair will be conspicuous.

To be able to explain the connection between the divergence angle d and the
phyllotaxis (m, n) we must first introduce two more concepts. If (m, n) is a visible
opposed parastichy pair and m > n, then (m, n-m) is called its contraction. The con-
traction of a visible opposed parastichy pair is necessarily visible (Adler, 1974). It is
important that a contraction is not uniquely reversible, contrary to what Tait
assumed (Tait, 1872). If (m, n) is a visible opposed parastichy pair, then (m+n,n) is
called its left extension, and (m, m-+n) is called its right extension. In general, only
one of these two extensions is visible, depending on what the value of the diver-
gence angle d is: There is a certain maximal interval [a, b] in which d may be if
(m, n) is visible. The mediant between a and b divides this interval into two seg-
ments. The left extension of (m, n) is visible if and only if d is in the left segment, and
the right extension is visible if and only if d is in the right segment. The following
propositions can be established : If the genetic spiral is a right spiral, every visible
opposed parastichy pair (m, n) with m, n>1 can be obtained as the end product of a
sequence of extensions starting with a visible opposed parastichy pair of the form
(t,t+1), where ¢ is a uniquely determined integer greater than 1. Moreover (¢, 1+1)
is visible if and only if d lies in the interval [1/(t+1), 1/f]. Now here is where the
continued fraction for d becomes relevant. Since the terms of the continued frac-
tion determine whether d is in the left segment or the right segment after each suc-
cessive insertion of the mediant between the ends of the segment previously deter-
mined, they also determine whether the corresponding extension that is visible will
be a left extension or a right extension. For example, (2, 3) is visible if and only if d
is in the interval [1/3, 1/2]. The mediant between 1/3 and 1/2 is 2/5. (3, 3) is visible if
and only if d is in the interval [1/3, 2/5]. (2, 5) is visible if and only if 4 is in the in-
terval [2/5, 1/2]. Further visible extensions of a visible opposed parastichy pair go
hand in hand with further restrictions of the range of d. The terms of the continued
fraction choose in succession a left or right segment for the position of 4 as each of
these segments is divided in turn by the mediant between its endpoints. To each
segment there corresponds a visible opposed parastichy pair. The choice of left or
right segment when the segment is divided by the mediant determines whether the
left or right extension of the corresponding visible pair will also be visible. Since an
opposed parastichy pair is conspicuous only if it is visible, the phyllotaxis of a stem
is thus intrinsically tied to the value of d. (As already mentioned, it also depends on
the value of .)

The state of a system of phyllotaxis is determined by the two parameters d and r. It
can therefore be represented by a point in the corresponding phase space, namely,
the (d, r) plane. In my model of phyllotaxis it is assumed that r is a decreasing func-
tion of time. Then the changes the system undergoes with the passage of time are
pictured as the path this point follows as r decreases. In my model I show that if the
minimum distance between units is maximized, then if m and n are the units
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typical pineapple, the two numbers are 8 and 13, not 13 and 13, and the angles they
make with the base are not the same. The symmetry displayed by a pineapple is an
asymmetrical symmetry.

To describe this symmetry we first idealize the picture by assuming the surface of
the pineapple to be cylindrical, and we think of each of the conspicuous spirals as a
helix drawn on the cylinder. A rotation of 360°/13 will bring the set of 13 spirals
into coincidence with itself, and a rotation of 360°/8 will bring the set of 8 spirals
into coincidence with itself. But neither of these rotations will bring both sets of
spirals into coincidence with themselves. Moreover, while each of these rotations
brings one of the sets of spirals into coincidence with itself, it does not necessarily
bring the set of florets on them into coincidence with itself. To find a motion that
will do this we have to uncover a more fundamental feature of the arrangement of
the florets. The numbers 8 and 13 are relatively prime. Whenever the numbers of
the left and right conspicuous spirals are relatively prime, the florets all lie on a
single helix called the genetic spiral (Bravais, 1837). Consecutive florets on the
genetic spiral are generally widely separated horizontally on the surface, so the eye
of the observer does not connect them. Instead, the eye observes the conspicuous
spirals formed by joining each floret to its nearest neighbors on the right and on
the left. Thus, the conspicuous spirals are secondary spirals associated with the
more fundamental genetic spiral.

We can now describe the underlying symmetry of the pineapple in terms of the
genetic spiral. First we idealize the picture further by representing each floret by a
point on the genetic spiral. (Think of it as the center of the floret.) The picture
then
becomes that of a point-lattice on a cylinder. The florets are arranged at equal dis-
tances on the genetic spiral. To bring a floret into coincidence with the next higher
floret, it suffices to turn the surface around its axis through an angle, called the
divergence angle, and then move the surface in a direction parallel to its axis
through a distance called the infernode distance. It is useful in the theory to nor-
malize the surface by taking its girth as the unit of measure. In the normalized sur-
face the divergence angle, expressed as a fraction of a turn, is numerically equal to
the length of the horizontal component of the distance between consecutive florets
on the genetic spiral, and is designated by d. The internode distance in the
normalized surface is called the rise and is
designated by r.

The phenomenon of units arranged in two seis
of conspicuous spirals displayed by the florets
of a pinecapple is a common occurrence in
plants. It appears also, for example, in the
arrangement of the scales of a pine cone and in
the arrangement of leaves around a stem.
Moreover, it is not restricted to a cylindrical
surface. The surface on which it appears may
be approximately a disc (the interior of a cir-
cle), as on the head of a sunflower, orf a
o I arabolic surface, as at the growing tip of a
F'g:?nzc;"gfif:; f;,'lf:f;a‘ Etem where the embryo leaves emerge. By an
(girth =1). appropriate conformal transformation each of
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is surely manifest that the simple way to do so is to elongate the axis, and to set the
leaves farther apart, lengthways on the stem. This has at once a far more potent
effect than any nice manipulation of the ‘angle of divergence’.” Airy (1873), whose
paper was presented to the Royal Society by Charles Darwin, also claimed that nat-
ural selection explained the spiral arrangement of leaves, but gave a different
explanation of what it was selecting for. The usefulness of the Fibonacci pattern of
phyllotaxis, he said, was found, not in the mature stem, where the leaves are widely
separated, but in the bud, where the embryo leaves are closely packed: "In the bud
we see at once what must be the use of leaf-order. It is for economy of space,
whereby the bud is enabled to retire into itself and present the least surface to out-
ward danger and vicissitudes of temperature.”

Schwendener, influenced by the obvious successes of mechanics in physics, put for-
ward a mechanical theory of leaf arrangement (1878) in which the convergence of
the divergence angle to g2 was explained by the contact pressure that leaf
primordia exert on each other. Unfortunately, his mechanical transposition to
botany of concepts derived from mechanics didn’t succeed because his argument
based on a force diagram was fallacious (see Adler, 1977a, p. 50).

Meanwhile a new branch of physics was coming to the fore, namely,
thermodynamics. In this branch, attention was centered on the flow of energy,
rather than on force diagrams. In the new intellectual climate created by thermody-
namics, Church developed his theory that is based on assumed pulses of energy. He
rejected the idea of a genetic spiral, and insisted instead that the parastichies are
fundamental. Using the disc picture you get when you take a cross-section of the
growing tip of a stem, he said that impulses of energy travel away from the center of
the disc in spiral paths, and that new leaves emerge where the spirals intersect
(Church, 1904, 1920). While his theory uses terminology borrowed from physics, it
clearly reflects the influence of the vitalist school of thought in biology.

Meanwhile attention in biology was shifting from anatomy and histology to bio-
chemistry. In this new climate of thought Schoute (1913) advanced the hypothesis
that the initial position of a leaf primordium is determined by the action of an
inhibitor secreted by the primordia already present. The inhibitor prevents another
primordium from emerging too close, and the location of a new primordium is
determined by the inhibition emanating from the two nearest primordia already
growing. Whether such an inhibitor exists is still an open question.

My own thinking which led to the construction of a mathematical model for a con-
tact-pressure theory of phyllotaxis was influenced by the philosophy of dialectical
materialism. Because of my materialist outlook, I sought an explanation in terms of
cause and effect. Because of my dialectical outlook, I looked for the internal con-
tradiction in the dynamics of growth of a stem that might provide a clue to what
happens. I found this contradiction in the fact that, as Schimper (1830, p. 25) had
pointed out, while leaf primordia tend to separate as far as possible, they are also
constrained to grow toward each other. Neighboring primordia grow toward each
other until they make contact. After that, further growth compels their centers to
move apart. But, since they are confined to a finite space, the distance between
them ultimately becomes maximized. The essential content of my model is the rig-
orous determination of the consequences of the maximization of the minimum dis-
tance between primordia (Adler, 1977a).
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() Ever since the first systematic study of phyllotaxis was undertaken by Schimper
(1830), Braun (1831, 1835) and the Bravais brothers (1837), the divergence angle
has been represented by its expansion as a simple continued fraction. While inves-
tigating the connection between the divergence angle d and the numbers of con-
spicuous secondary spirals (m, n), I uncovered the geometrical meaning of a simple
continued fraction: it represents a mediant nest of intervals (Adler, 1978). As is well
known, for any given nest of intervals on the real line i,, iz, «ers by 5o, Where €ach iy
is wholly contained in i, ;, -and where the length o% t, approaches zero as n
approaches infinity, there is a unique real number that lies in all the intervals of the
nest. A mediant nest is a special kind of nest constructed as follows with the help of
the concept of the mediant between two rational numbers. If a/b and c/d are ratio-
nal numbers in lowest terms, then the fraction (a+c)/(b+d) is called their mediant.
It is easily seen that it lies between them, and that it, too, is in lowest terms. Now
begin with the positive half of the real line, and represent 0 by the fraction 0/1, and
represent infinity by the fraction 1/0. The mediant between them is 1/1=1. This
point divides the positive half of the real line into two intervals: the left interval is
between 0 and 1; the right interval is between 1 and infinity. Choose one of these
intervals as i,, and represent your choice by either 0 or 1, according as you chose
the left or right interval respectively. Then in the interval you chose, insert the
mediant between its endpoints, dividing it into two intervals. Choose one of them
as i and represent your choice by 0 if you chose the left interval and by 1 if you
chose the right interval. Continue in this way ad infinitum to obtain a nest of inter-
vals i), ip,..., ip,... represented by a sequence of zeros and ones. The zeros and ones
in the sequence occur in clusters, with each cluster of ones ending where a cluster
of zeros begins, and vice versa. Let a; be the number of ones in the first cluster. (It
may be zero or a positive integer.) Let a, be the number of zeros in the next cluster,
let a be the number of ones in the next cluster, etc, so that a,, is a number of zeros
if n is even, and is a number of ones if » is odd. Then the number defined by the
mediant nest is the number represented by the simple continued fraction a; + 1/a,
+ 1/a3 + ... + 1/a, + ... (in this notation we use the convention that everything that
follows a fraction line / is understood to be under it). Thus every simple continued
fraction can be interpreted as a set of instructions for constructing a mediant nest
that contains the number that the simple continued fraction represents: begin with
the positive half of the real line, and insert mediants as described above. Then con-
struct the mediant nest by first choosing the right interval 4, times, then choosing
the left interval a, times, then choosing the right interval a3 times, etc. The mediant
nest associated with the simple continued fraction that represents' the divergence
angle d plays a significant role, as we shall see, in the connection between d and the
phyllotaxis (m, n).

D’Arcy Thompson, in his famous book On Growth and Form (1942), after dis-
cussing the secondary spirals seen in phyllotaxis, said: "The determination of the
precise angle of divergence of two consecutive leaves of the generating spiral does
not enter into the above general investigation [...], and the very fact that it does not
so enter shews it to be essentially unimportant.” This conclusion is entirely wrong.
Before the real connection between the divergence angle d and the phyllotaxis
(m, n) could be established it was first necessary to make some precise distinctions
among different kinds of secondary spirals. Botanists use the term parastichies for
secondary spirals, so we shall use this term from now on. Although the terminology



