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SYMMETRY IN GEOMETRY: A PERSONAL VIEW
J. F. Rigby

(b. Westhoughton, England, 1933) Mathematician

Address: University of Wales College of Cardiff, School of
Mathematics, Scngcnnydd Road, Cardiff CF2 4AG, Wales U.K.

Fields of interest: Geometry (also ornamental arts)

Award: Joint prize-winner in an International Competition in
Geometry, ;&)nsomd by Science Software Systems Inc., Los
Angcles?'l )

Publications: Multiple intersections of diagonals of regular
ﬁlygons, and related topics. Geometriae Dedicata 9, 1980, 207-238;

¢ geometry of cycles, and generalized Laguerre inversion. In: The
Geometric Vein. Springer, New York 1981, 355-378; Configurations
of circles and points. J. London Math. Soc. ( z}zg 1983 131-148;
Two 124163 configurations. Mitt. Math. Sem. Giessen 165, 1984, 135-
154; Butterflies and snakes. In: M.C. Escher: Art and Science. North-
Holland 1986, 211-220

This article is not a general survey of zmmeny in geomex;)y[, but merely

an account of some of the ways in which symmetry has played a part
in my own work. .

ll

"Symmetry" is a noun used to describe a state or property possessed by certain
patterns, objects and geometrical figures. If a plane figure is symmetrical about a
line of symmetry or mirror line, as in Figure 1, then the transformation known as
reflection in that line is called a symmetry of the figure. We thus have a different but
related use of the word "symmetry”, to describe a transformation that maps a figure
to itself. There are other well known types of symmetry. The badge or symbol of the
Isle of Man (Figure 2) is mapped to itself by a rotation through 360/3 degrees, so this
rotation is a symmetry of the badge, a three-fold rotational symmetry. A frieze pattern
(a pattern that repeats regularly in one direction) has a translation as its fundamental
symmetry. These three types of symmetry all preserve lengths and angles: they map
any figure to a congruent figure. Because the human eye regards congruent figures
(the two wings of a butterfly; the three legs of the Isle of Man badge) as being in
some sense "the same", these basic types of symmetry are easily recognized; we shall
discuss more subtle forms of symmetry later.

It is not surprising that, in geometry, if we start with a symmetrical situation or
figure, we can deduce further symmetrical properties of that figure. Once we have
progressed beyond the stage of Euclid’s "pons asinorum” (if a triangle has two
congruent sides then it has two congruent angles), such deductions of symmetrical
propertics become almost second nature and are often made instinctively. More
surprising are the unexpected occurrences of symmetry. As a simple example, the
curves known as conic sections were first defined as sections or slices of a right
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Symmetry in Geometry 65

circular cone, as their name implies. When we obtain an ellipse by taking an oblique
plane section of a right circular cone, it is not difficult to sce that the complete three-
dimensional figure has a plane of symmetry, and hence an ellipse has one line of
symmetry; but we could be forgiven for guessing that an ellipse might be more
pointed at one end like a bird’s egg. The well known fact that an ellipse has two
perpendicular lines of symmetry comes as a surprise.

Transformations that preserve length are called isometries. Another important type
of transformation is inversion in a circle: if the circleehas centre O and raglius r, if
the points P and P’ lie on the same radius vector from O, and if OP.OP’ = r, we say
that P and P’ are inverse points in& and the transformation that maps each point to
its inverse in& is called inversion in& Inversion alters the shapes as well as the sizes
of figures, but every inversion maps circles to circles or hnes. In the study of
inversion, lines are regarded as circles of a special type, and reflection in a line as a
special case of inversion in a circle; thus "inversion” is an extension of "reflection”.

Let S and S’ be two Qoints in a plane, at a distance 2a apart. The locus of a point P
such that SP.S’P = b“, where b is a fixed length, is called a Cassinian oval, and it is
clear from the definition that such a curve has two perpendicular mirror lines. When
b < a, the curve is a bioval (Figure 3), and it can be shown that the curve is mapped
to itselflpy inxcrsign in the circle{with centre O (the midpoint of SS°) and radius k,
where k" = a” -b" (Rigby 1983; see also Kavanau 1982). This circle is called a circle
of symmetry of the bioval, and here we have an example of another type of symmetry:
inversive symmetry. In this case the inversive symmetry is unexpected and surprising.
The symmetries of a figure always form a group; the isometric symmetries of the
Cassinian bioval form a group of order 4 (consisting of the reflections in its mirror
lines, the rotation about O through 180°, and the identity), but the inversive symmetry
group of the bioval has order 8. Whenb > a, the curve is a monoval, as ‘{n igure ﬁ;
this figure also shows the circle 8 with centre O and radius h, where h” = b" - a".
Inversion in B, followed by rotation about O through 90°, maps the monoval to itself
(Rigby 1983), so the Cassinian monoval also has an inversive symmetry group of
order 8; but this group is not isomorphic to the symmetry group of the bioval.

Pappus’ Theorem provides an example of a different type of symmetry. Suppose that
A, B, C and also A’, B’, C are two sets of three collinear points. Denote the points
BCNB'C, CA'MICA, ABNA’B by L, M, N as in the Figure 6; then L, M, N are
collinear. In the figure we now have nine points and nine lines; each line contains
three of the points and each point lies on three of the lines, and the figure is called a
93 Pappus configuration. Any one-to-one mapping of the scts of nine points and nine
lines to themselves that preserves incidence is called an automorphism or
combinatorial symmetry of the figure; alternatively we can say that a combinatorial
symmetry maps collinear points to collinear points. The combinatorial symmetry
group of a Pappus configuration has order 108. These symmetrics are of a type
different from the previous ones: in general a combinatorial symmetry of a figure is
not induced by a symmetry of the whole plane such as a reflection, an inversion or a
collineation (a type of symmetry that we shall not need to define here).

Another famous configuration is the 8, Clifford configuration of eight points and
eight circles, where each circle contains four of the points and each point lies on four
of the circles (Figure 5). The combinatorial symmetry group of this configuration
has order 192. A unique Clifford configuration can be built up starting with any four
circles in general position through a common point; a surprising result is that, given
any Clifford configuration, by applying a suitable inversion we can transform the
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Symmetry in Geometry 67

configuration to another Clifford configuration that has twofold rotational symmetry
like the one in Figure 5; thus every Clifford configuration has an inversive symmetry
group of order 2 (Rigby 1977).

The three internal bisectors of the angles of a triangle ABC meet at the incentre of
the triangle. Even a simple figure like this has a combinatorial symmetry group of
order 6 (because we can permute A, B, and C amongst themselves in six ways), but
we do not usually bother to mention such a simple fact. However, if we consider the
three altitudes of ABC, meeting at the ort ocentre H, the situation is more
interesting, because A is lhc orthocentre of HBC, B is the orthocentrc of AHC, etc.,
and the combinatorial symmetry group of Figure 7 (ignoring the circle) has order 24,
The symmetries of this figure are more than just combinatorial symmetries; they map
collinear points to collinear points, but they also map perpendicular lines to
perpendicular lines: they preserve the structure of the figure. In Figure 7, the points
D, E and F clearly play a different réle from A, B, C and H, but by addmg some
circles to the figure we can make it more symmctrical, as we shall see in the next

paragraph.

In inversive geometry, it is convenient to adjoin a single point at infinity to the plane,
and to postulate that all lines pass through this point at infinity. Thus two lines,
unless they are parallel, now meet at two points, one of them at infinity. This is not
unreasonable, since we regard lines as circles of a special type, and if two circles meet
once then in general they meet again. Because of the right angles in Figure 7, if we
draw the circles whose diameters are BC, CA, AB, AH, BH and CH, we obtain
Figure 8a. This figure contains eight points, including the point at infinity§, and
twelve circles (six of which are lines). Each point lies on six circles, and each circle
contains four of the points. We have an 8,12, configuration of points and circles; all
eight points, and all twelve circles, play 1gcn ical rdles in the configuration, and its
symmetry group has order 48. Exght of the symmetrics (including of course the
identity) are induced by inversions or products of inversions; for instance, inversion
in the circle shown in Figure 7 interchanges B and F, C and E, H and D, and A and®
(inversion in any circle maps the centre of the circle to the point at mﬁmty, and
conversely). If we invert Figure 8a using a circle centre X as the circle of inversion,
we obtain Figure 8b which shows the symmetry more clearly.

Suppose that two opposite points of a sphere are designated as the north and south
poles, and suppose that a plane touches the sphere at the south pole. If a point P of
the plane is joined by a line to the north pole, this line will meet the sphere again at a
point P, called the stereographic projection of P on the sphere; the stereographic
projection of f2is the north pole itself; circles and lines in the plane are projected to
circles on the sphere. It can be shown that, by choosing a suitable sphere, Figure 8a
can be stereographically projected to the vertices of a rectangular box, together with
twelve circles on the sphere each containing four vertices. Thus the familiar figure of
a triangle and its orthocentre can be transformed into a figure with even more "visnal
symmctry" than Figure 8b. We should note also that Figure 7 shows the internal and
external bisectors of the angles of triangle DEF, so it illustrates not just one but two
familiar figures: a triangle and its altitudes, and a triangle and its angle-bisectors.

I recently found a similar example, of less basic importance than the previous one,
but showing how an extension of the original figure can increase the overall
symmetry. The following theorem is an extension of a result whose proof was asked
for as a problem in the Mathematical Gazette (Rigby 1987). Let«Cand B in Figure 9
be circles with centre Q; let P, Q, R, S lie on B, and let PQ, RS meete{at A, B; then U
and X (as shown in the ﬁgure) are equidistant from O. A second
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Symmetry in Geometry 69

application of the theorem shows that V and W are equidistant from O. But if we
apply the theorem to B, C, D, A on{ instead of to P, Q, R, S on B, we see that U and
V are equidistant from O, Hence U, V, W, X liec on a circle with centre O. The
complete figure of twelve points, six lines and three circles now has a combinatorial
symmetry group of order 48, and the twelve points all play identical roles in the
figure, as do the six lines and the three circles: the symmetry group is transitive on
points, lines and circles. This configuration can be extended from concentric circles
to coaxial circles, ‘and there is a simple proof of its existence using coordinate
geometry.

Figure 10 shows a tessellation composed of three sizes of equilateral triangles and
congruent scalene triangles; the tessellation must be regarded as extending to infinity
in the plane. It should be clear that the centre of each small equilateral triangle is
equidistant from the centres of six other small equilateral triangles. Thus the centres
of all the small equilateral triangles form an equilateral triangular lattice. In the
centres of the triangles of this lattice are the centres of the remaining equilateral
triangles; hence the centres of all the equilateral triangles form another equilateral
triangular lattice. Thus we see that the centres of the equilateral triangles in Figure
11 form an equilateral triangle. This result is known as Napoleon's Theorem. The
original tessellation can be built up using any shape of scalene triangle; hence
Napoleon’s Theorem is true for any triangle with equilateral triangles erected on its
sides. This is not the only way of proving the theorem, but the tessellation, with its
centres of threefold rotational symmetry and its translational symmetry, provides a
simple visual way of perceiving the truth of the theorem. Unfortunately, tessellations
cannot be used to prove various generalizations of the theorem (Rigby 1988).

The tessellation of Figure 12 can similarly be used to show that the centres of squares
erected on the sides of a parallelogram form a square (Figure 13). The tessellation
of Figure 14 illustrates clearly one of the proofs of Pythagoras’ theorem (Friedrichs
1965); it shows how and why the square on the hypotenuse of a right-angled triangle
can be cut into five pieces that can be fitted together again to form the squares on the
other two sides.

2.

The subject of tessellations, patterns and designs in a plane, their different types of
symmetry, and ways of colouring them, is a vast one; for extensive coverage of these
topics in the Euclidean plane, and copious references, the reader is referred to
Griinbaum and Shephard (1987). We shall consider three aspects of the. subject
here; the first is mathematical but the results can also be used as ornamental art, the
second shows a mathematical idea being realized in an artistic manner, and the third
is purely ornamental.

First we shall consider perfect-and semi-perfect colourings of regular tessellations,
and their relation to regular maps, a subject that I am still investigating. The
colourings obtained are artistically pleasing. Figure 15 shows two colourings of the
regular tessellation {4,4}. In the first colouring, using four colours,-any symmetry of
the underlying uncoloured tessellation (i.e. any isometry that maps the tessellation to
itself) permutes the four colours; hence the colouring is called a fully perfect
colouring. In the second colouring, using five colours, any direct symmetry of the
underlying tessellation (i.e. any translation or rotation mapping the tessellation to
itself) permutes the colours, but any opposite symmetry sfor example a reflection)
jumbles up the colours, mapping some black squares to black, some to white, some
to shaded squares; this colouring is called a chirally perfect colouring: like a pair
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Symmetry in Geometry 71

of hands, the colouring and its mirror image are different. Notice that to proceed
from any black square (for instance) to the neighbouring black squares we make a
“right-handed” knight’s move as in chess. Suppose we cut out the sq:larc ABCD from
Figure 15b, then join the edge AB to the edge DC to form a cylinder, and finally
(assuming that we are dealing with an elastic material) join one circular edge of the
- cylinder, originally the edge BC of the square, to the other edge AD. We have now
created a torus, and on this torus is a tessellation or regular map of five (distorted)
- squares mecting by fours at five points. Another way of visualizing the same
situation is to start with Figure 15b and identify squares of the same colour; this means
in effect that we roll up Figure 15b into a cylinder in such a way that AB coincides
with DC, then push the cylinder into itself in such a way that BC coincides with AD.

The same. procedure can be carried out in a hyperbolic place, but the situation is
more complicated and more difficult to visualize. The regular maps to be described
in the next few paragraphs, the notation used for them, and their symmetry groups,
are discussed in Coxeter and Moser (1972), Chapter 8. Figure 16 shows a {3,7}
tesscllation of a hyperbolic plane, illustrated by using a Poincaré model of the plane;
the tessellation is composed of triangles meeting by sevens at each vertex. In
"hyperbolic reality” all the triangles are equilateral and congruent to each other, but
in a Euclidean planc we can only draw a distorted picture of this situation. The
figure also illustrates the beginnings of a chirally perfect colouring of the tessellation
in scven colours. All the black triangles have been coloured; the reader is
encouraged to work out the two simple rules for proceeding from any black triangle
to the neighbouring black triangles, and then to complete the colouring using a total
of seven colours. If this is done, it will be found that the black triangles (for instance)
are not all surrounded in the same way by triangles of other colours: there are in fact
eight possible ways in which a black triangle can be surrounded. If two triangles are
surrounded in the same way, they are said to be equivalent; there are therefore 56
inequivalent triangles in the tessellation. If we now "identify equivalent triangles” in
the coloured tessellation, we obtain a surface with a regular map of 56 triangles
mecting by sevens at 24 points. This surface is-a "sphere with three holes” (in the
same way that a torus is a sphere with one hole) and the regular map is denoted by
{3,7}¢. It is possible to illustrate the surface in three-dimensional Euclidean space as
a polyhedron with 56 plane triangular faces corresponding to the faces of the map,
though the triangles are not of course regular. The polyhedron is shown in colour on
the cover of an issue of the Mathematical Intelligencer, accompanying an article by
Bokowski and Wills (1988), and its construction is described zy Schulte and Wills
(1984). The colouring of the tessellation also produces a chirally perfect colouring of
the map. This colouring can be used to show that the symmetry group of the regular
map {3,7}; is isomorphic to the group of collineations and correlations of the
projective plane of seven points (Rigby 1989).

Figure 17 shows the black and the stippled regular quadrangles (or squares) in a fully
perfect colouring of the hyperbolic tessellation {4,6} in five colours; two of the
colours are shown in this figure because the rules for colouring are not easy to see
from one colour only. We can complete the colouring as before, but this time we
shall extend the meaning of "equivalent™; if the way in which one black square is
surrounded is the exact mirror image of the way in which another black square is
surrounded (and that situation does happen in this colouring) we also say that the
squares are equivalent. If we now identify equivalent squares in the coloured
tessellation, we obtain a surface with a regular map of 15 squares meeting by sixes at
10 points. Because of the "mirror image” situation just described, this surface is a
one-sided (or non-orientable) surface; the Petrie polygons of the map have length 5,
but the map must not be confused with another map denoted by {4,6}5 which has 30
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Symmetry in Geometry 73

faces. We now also have a chirally perfect colouring of the map. It is worth noting
that non-orientable surfaces sometimes arise in this way from fully perfect
colourings, but they never arise from chirally perfect colourings. (The colouring in
Figure 17 also provides a perfect colouring of {4,6} 5, which can be used to prove that

the symmetry group of {4,6} 5 is C, x Sg).

Another well known regular map on a non-oricntable surface is {3,8},, whose
combinatorial symmetry group is isomorphic to that of ¥3,7} as described above, so
it is natural to ask whether there is a perfect colouring of {3,8} in seven colours. An
equivalent question is whether there is a fully perfect colouring of {3,8} in seven
colours from which we can construct {3,8}, by identifying equivalent triangles. In
fact there is no perfect colouring of {3,8} in seven colours, either fully perfect or
chiral. But there is a semi-perfect colouring of {3,8} in seven colours; "semi-perfect”
means that half the direct symmetries and half the opposite symmetries of {3,8}
permute the colours, whilst the other symmetries jumble them up. This semi-perfect
colouring is indicated in Figure 18, where the black and the stippled triangles are
shown. We must be more careful now about the rules for colouring, Imagine each
triangle to be designated as positive or negative, adjacent!triangles having opposite
designations; then there is one set of rules for proceeding from a positive triangle to
the adjacent triangles of the same colour, and the mirror image of those rules must
be used to proceed from a negative triangle to the adjacent triangles of the same
colour. If we identify equivalent triangles in this colouring we obtain the regular map
{3,8}4. The reader may like to find a fully perfect colouring of {3,8} in 28 colours
that gives rise to {3,8} when we identify equivalent triangles.

The Dutch artist M.C. Escher used hyperbolic tessellations as the basis for his "Circle
Limit" designs, which are illustrated in the various books about his work; see also the
article "Creating Hyperbolic Escher Patterns” by DJ. Dunham in Coxeter et al.
(1986), where many other articles relevant to tessellations and their colouring can
also be found. An excellent illustration of a perfect colouring of {7,3} in eight
colours, by C. Leger, formed part of a travelling exhibition “Horizons
Mathématiques®, and is illustrated in colour in the accompanying booklet "Mosaique
Mathematique” which was originally obtainable from M. Darche (1981).

Now let us consider wallpaper designs and their symmetry types and pattern types.
For our present discussion, without being too technical, we can define a wallpaper
design to be a design in a Euclidean plane that repeats regularly in more than one
direction. A detailed discussion of the definitions and ideas used in this section can
be found in Gritnbaum and Shephard (1987), Chapters 1 and 5. There are seventeen
different symmetry types of wallpaper design. One of these types, denoted by cmm,
is shown in Figure 19a; this design bas horizontal and vertical mirror lines forming a
rectangular Frid, with centres of two-fold rotational symmetry at the centres of the
rectangles of the grid (Figure 19b). Figures 19¢, d and e show other designs with the
same symmetry type. The basic motif in Figure 19a has no non-trivial symmetries: it
is called a primitive motif for the symmetry type. The motifls in c, d and e show the
different symmetry transformations in this symmetry type: mirror symmetry, twofold
rotational symmetry, and d2 symmetry respectively ("d2 symmetry” is the symmetry
possessed by a motif that has two perpendicular mirror lines; the symmetry group of
such a motif is denoted by d2 or D). Figure 193, ¢, d and e therefore show the four
differcnt pattern types associated with symmetry type cmm, denoted in Griinbaum
and Shephard (1987) by PP17, PP19, PP18 and PP20; the first of these is a primitive
pattern type. The problem that occurred to me on reading about the concept of
pattern types was: "can we find, adapt or create artistic designs that incorporate all
the different imprimitive pattern types associated with a particular symmetry type?"
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Symmetry in Geometry 75

Figure 19f shows the patterns of Figure 19¢, d and e merged together, the motifs now
being white instead of black. I found this design in lecaded window-panes at Haddon
Hall, Derbyshire, England, just a day or two after formulating the problem, and this
is partially what prompted me to leave out the primitive pattern type from the
composite design.

Figure 20 shows a design of symmetry type p4m, combining four patterns of types
PP38, PP39, PP40 and PP41; the basic motifs are now either black or white, and we
must imagine them as tiles separated by cement because it is important that tiles
should not coalesce to form larger tiles with a different type of symmetry. This
design was adapted from Figure 21, a tile design from Fountains Abbey, Yorkshire,
England; see also Griinbaum and Shephard (1987), p.7.

Figure 22 shows an Islamic-style design by the author, of symmetry type p6m,
combining six patterns of types PP47, PP48A, PP48B, PP49, PP50 and PP51. Figure
23 shows a variation of this design, of symmetry type p6.

Figure 10 has symmetry type p3; the black tiles are primitive motifs forming a pattern
of type PP21, and the equilateral triangles of any one size form an imprimitive
pattern of type PP22. Figure 12 has symmetry type p4; the black tiles form an
imprimitive pattern of type PP31, and the squares of either size form an imprimitive
pattern of type PP32.

Finally, Figure 24 and 25 show two practical contributions by the author to tapestry
work or cross-stitch embroidery. The fish design is based on a design by Escher
(Coxeter et al., 1986, pp. 387, 395), but I created the carnation design some years ago
before becoming aware of Escher’s work. The fishes can be perfectly coloured with
five colours, creating a more interesting effect than Escher’s four colours; see G.C.
Shephard’s article in Coxeter et al. (1986). Both these designs have actually been
embroidered, on a church knceler and a footstool.
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