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PART 1, FROM ART TO SCIENCE (19TH CENTURY)
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In the 5th c. B.C. the Greeks opened a new chapter in geometry and introduced the
term symmetria, while in the mid-1810s David Brewster — later Sir David — invented,
during his physical studies, a "new optical instrument called the kaleidoscope” (UK.
Patent No. 4136 in 1817). It is not surprising that he coined the word from Greek
expressions: kalos (beautiful), eidos (form), and skopien (to see). The instrument is
really simple, but it links both scientific 1deas ‘and aesthetic impressions. This last
statement is also true in the case of the concept of symmetry, and the main goal of
the new International Society, ISIS-Symmetry, is to emphasize precisely such
interdisciplinary connections.

Another common factor in the cases of both symmetry and the kaleidoscope is that
the related ideas had existed long before the birth of the terms themselves. The sense
of symmetry goes back to the prehistoric period, while the modern kaleidoscope also
had some preliminary versions. Brewster wrote, after publishing a short paper in
French (1818), a whole monograph in English on the kaleidoscope where he
discusses some earlier instruments as well (Brewster, 1819). One may think that it is
not a good idea for a patent-holder to do so, but Brewster always made clear the
differences between his version and the earlier ones. For example, he discusses
Athanasius Kircher’s instruments of 1646, but immediately makes the criticism (pp.
147-148) that there the allowed angles between the two plane mirrors are 360°/n
(where n = 3, 4, 5, ...), instead of restricting them to 180°/n (where n = 2, 3, 4, ...).
Of course, all of the latter angles are also included in Kircher’s list as 360°/2n, but
Brewster excluded the other half of the list where the denominators are odd
numbers.
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Most commercial kaleidoscopes consist of a tube enclosing two plane mirrors
inclined at an angle of 60° along a common edge (360°/6 = 180°/3 = 60°). An object
in this sector — in a shallow glass-box at one end of the tube — will be reflected by
these two mirrors, as well as by the virtual mirrors of mirrors, and so on, presenting
ultimately a symmetric pattern to the person viewing it from the other end. The
eychole should be very close to the common edge of the two mirrors. The six sectors
seen in this kaleidoscope are geometrically the same (isometric), but not equally
bright: the best sector is that one in which the original object is positioned, while the
mtensxty of light drops off during the successive reflections. If the object between the
two mirrors is a reduced image of a left hand, then we see three left hands and three
right ones, forming three symmetric pairs. The whole system has a threefold
rotational symmetry, as well as three mirror lines (three is one half of the number of
sectors). Interestingly, the frequent characterization of this rosette-like pattern by
"hexagonal symmetry” is incorrect; we need a symmetric object in a symmetric
position to ‘provide true sixfold rotational symmetry with six mirror lines. This
observation may help us to understand what is wrong in the cases excluded by
Brewster, where the number of sectors is odd. In these cases — using an arbitrary
object without special symmetries — the mirror images do not fit together to form a
symmetric pattern (one half of an odd number is not an integer). It is easy to
understand the ambiguity and the related blurring of the pattern in a simple drawing:
if we consider the mirror images of the original object successively in both directions,
they will finally "clash” at the opposite side of the circle. The resulting ambiguity can
only be eliminated by placing a symmetric object in a symmetric starting position; in
that case the images that clashed earlier superimpose on_one another.

Those who are familiar with the theory of symmetry groups - useful for the
mathematical approach to periodic structures and invariances in many fields,
including crystalﬁ)graphy and ornamental arts — may reformulate these obsérvations
in terms of simple theorems about cyclic (rotation) groups and dihedral (reflection)
groups. Some of Brewster’s remarks intuitively anticipated the modern approach to
thinking in terms of group theory; moreover, we may find in his monograph some
preliminary ideas on colored symmetries, when he refers to the combinations of
forms and colors (Brewster, 1819, chaps. 11 and 17, respectively). His related
knowledge was probably based not only on the oftcnemphasnzed optical studies,
specifically on his investigations of the polarization by multiple reflections, but also
on his interest in the morphology of crystals. He even connected these two fields,
contributing to the beginnings of optical crystallography.

The kaleidoscope made a real boom on the market; in a similar way to the success of
the Rubik cube in the early 1980s, whxch is also associated with kalos and eidos, but
the manipulation of the cube requires more than just skopien (to see). Brewster
(1819, p. 7) proudly remarked in his monograph on the kaleidoscope that "two
hundred thousand instruments have been sold in London and Paris during three
months". Ironically, he did not receive much money for his patent: the kaleidosco
like many other toys, was quickly pirated. Brewster achieved, however, a reputation
among the general public for the creation of the kaleidoscope. Not only was the
instrument itself successful, but also its name, coined by Brewster.

Lord Byron was among the first people in 1818-19 who used the expression
"kaleidoscope” in a metaphorical sense (Don Juan, 2, 93):

... this rainbow look’d like hope —

Quite a celestial Kaleidoscope.

i
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The word also appeared in the titles of collected essays or poems and of some
periodicals. The earliest example known to us has an additional linguistic "mirroring™:
the Greek-rooted English word was translated into Latin: Kaleidoscopiana
Wiltoniensia, or, A Literary, Political, and Moral View of the County of Wilts, during the
Contested 'Election for ‘its Representation, in June 1818... (London, 1818). The
expression made its way across the Atlantic very quickly. It appeared in the title of a
newspaper, The Kaleidoscope, which came out in Boston, Massachusetts (first issue
November 28, 1818).

1t is interesting to note that there are many ancient Greek texts on aesthetics where
the concept of kalos (beauty) is interpreted by symmetria. Among others, both Plato
(Philebus, 64¢) and Aristotle (Metaphysica, 1078a) discussed this connection.
Interestingly, the emphasis on the connection between “kaleidoscope” and "symmetry”
did not come immediately after the invention of the instrument. The reason is very
simple: in that time the térm symmetry, as in the Greek tradition, was associated
rather with proportion and beauty, while such meanings as mirror or bilateral
symmetry and rotational symmetry spread only a little later.

Characteristically, Brewster (1819) contributed also to that process. In his
monograph on the kaleidoscope he uses the term with the new meaning as well. The
adoption of the expression in this context is really very fortunate: the patterns in a
kaleidoscope are symmetric in both the traditional sense (proportion, or beauty in
general) and the modern geometric-crystallographic one (mirror and rotational
symmetries). Probably Brewster was aware of Andrien-Marie Legendre’s Eléments
de géométrie (originally published in 1794), where the French mathematician
pioneered the modern approach to the understanding of symmetry. This famous
textbook was published many times and used throughout the ‘decades. In fact,
Brewster edited in 1822 the English translation of this book. In his later works,
Brewster also popularized the expression "symmetry” in the context of physics: he
spoke, for example, about "symmetrical refraction” (4 Treatise on Optics, London,
1831, p. 338) and about the "axis of symmetry” of a horseshoe magnet (4 Treatise on
‘Magnetism, Edinburgh, 1837, p. 39). Interestingly, the Oxford English Dictionary
(1961, vol. 10) gives credit to a crystallographic monograph, written in 1823 by
Brooke, for the first use of the term in modern geometric sense, while Brewster is
only second in line thanks to the cited paper on magnetism. Obviously the linguists
missed the earlier monograph by Brewster (1819).

"Symmetry" became a colloquial expression very quickly in. various geometrical
contexts, including the domain of kaleidoscope. Thomas H. Huxley in his
Physiography (London, 1877) wrote not only about the "hexagonal symmetry" of snow
_crystals (p. 56), but also about the "symmetrical shapes” seen in a kaleidoscope (p.
62). James Blyth (1880) in his article "Kaleidoscope® for the Encyclopaedia Britannica
explained the universal fascination with the instrument by referring to the "endless
-variety and perfect symmetry” of the presented forms. Sincé the late 19th century
almost every discussion of the kaleidoscope has referred to symmetry. Moreover, the
symmetry-kaleidoscope relationship became "symmetric™: the system of Subject
Headings of the Library of Congress, which has been adopted by many contemporary
bibliographics and computer information services, suggests, in the case of
"symmetry”, the cross-reference "kaleidoscope" and vice versa.
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KALEIDOSCOPE IN THE ARTS?
(THROUGH A KALEIDOSCOPE DARKLY)

There is, however, a significant difference between the histories of "symmetry” and
"kaleidoscope”. The first one became a central concept connecting scientific and
artistic ideas throughout the ages. Brewster himself hoped for something similar in
connection with his instrument. The title of his patent document emphasized that the
kaleidoscope has a "great use in all the ornamental arts” (Brewster, 1817). In his 1819
monograph he went even further, believing that the kaleidoscope would replace the
work of the designer, because (p. 116) "it will create, in a single hour, what a
thousand artists could not invent in the course of a year". Brewster’s idea was of a
new form of art created with the kaleidoscope, which would be based on the harmony
of colors, shapes, and music. The general idea of such harmonies gained some
support among artists, especially among composers who made experiments in the
field of colored music. Even such a leading composer as Ferenc Liszt becameé
interested in new optical devices to enrich the performance of his music; in
particular, he planned to use dioramas for the Dante Symphony. We need not go into
the details of the history of colored music, but it is important to note here that,
according to various experimental studics in psychology, the synaesthetic sound—color
associations are not universal, but depend on the individuals. The orchestra
conducted by Liszt was in trouble - accordmg to a famous story ~ when the maestro
demanded that 'the musicians give him "more blue". In _any case, there were many
interesting experiments in connection with colored music, but the kaleidoscope did
not become a popular tool in the field. The enthusiasts of the kaleidoscope, however,
did not give up easily: Brewster himself and several later inventors created many
advanced versions of the original instrument, including the telescopic kaleidoscope or
teleidoscope, where distant shapes can be projected into the kaleidoscope to be
multiplied by the mirrors; the polyangular kaleidoscope, where the angle between the
mirrors can be varied; the rolleidoscope, where a set of object-boxes can be rotated,;
the multi-mirror kaleidoscope, where there are three or four mirrors instead of just
two; and the kaleidograph, where the symmetrical patterns can be displayed on a
screen or a glass disk. These instruments could be found, however, mostly in the
children’s room, sometimes in the physics teacher’s collectlon, but not in the
designer’s office,

Why could not the kaleidoscope satisfy Brewster’s dream for the arts? A similar
question was discussed not long ago by the leading art historian Ernst H. Gombrich
(1979). Let us look at Sir Ernst’s conclusions in connection with Sir David’s

kaleidoscope. Gombrich emphasizes that he is a devotee of this instrument,

moreover that he likes to share his pleasure with others. There is, however, a
disappointing reaction: after a few "ohs" and "ahs” comes the anticlimax ‘when we put
the kaleidoscope aside and move on to something else. The main reason is, according
to Gombrich, that the kaleidoscope with its multiple symmetries exhibits maximal
redundancy. It leads to monotony, where there is little left for us to ¢xplore.

From the designer’s point of view, it is also obvious that the kaleidoscope, apart from
some general aesthetic inspiration, could not become a practical tol. First of all, the
designer needs to draw his sketch on paper or some ather suitable surface. To
transfer a pattern from the kaleidoscope onto the new surface is hot easy, although
this problem can be solved by tracing the figures projected out by the kaleidograph
we have mentioned earlier. There are, however, more crucial dlsadvantages The
kaleidoscope, although it offers infinitely many realizations of a given type of
symmetry, does not go far beyond patterns which are easily available in our
environment. If we need a rosette motif we may have enough inspiration — as the
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namc suggests — from secing various flowers. Designers often use cut-outs or stencils
of such motifs, which can be traced easier than the images projected by
kaleidographic or photographic methods. Morcover, the kaleidoscopic patterns
within the given type of symmetry are determined by chance, and there is no simple
way of modifying them in a creative way. The situation is a little bit similar to
Eddington’s famous example. where monkeys are jumping on the keyboard of a
typewriter. If we are lucky, or if we have infinite time on our hands (as well as well-
behaved monkeys), we may produce in this way even the most beautiful poetry.
Sometimes we need the pleasure of watching the kaleidoscope (or monkeys in the
z00), but it is definitely not a uscful method of creating works of art.

Brewster’'s dream about the artistic importance of the kaleidoscope, “however,
survived as a myth. We may follow its elements in many books. Let us see, for
example, the article "Kaleidoscope” in various editions of the Encyclopaedia
Britannica:

- [The kaleidoscope is] of essential service in the art of the designer (1880);
- The instrument has been extensively used by .designers (1911);
- .. it has real value for the pattern designer and offers an admirable
illustration of the image-forming properties of combined inclined mirrors
(1968);

- ... the kaleidoscope also has value for the pattern designer (1989).

The entries become shorter - and shorter - through the decades, but the idea of
applications in design — although with less emphasis - has invariably been present.
- The situation is similar in the case .of textbooks, where we may observe additional
motifs of "scientific folklore™:

- The kaleidoscope, while being a well-known toy, is also used commercially
in various branches of design requiring symmetrical patterns, as in the
design of pottery, wall-paper, etc. (W.HA. Fincham, Optics, 7th ed,
London, 1965, p. 34)

- In fact, this-device has been turned to practical use in making designs for
carpets and wall-papers (J.P.C. Southall, Mirrors, Prisms and Lenses, Reprint
edition, New York, 1964, p. 48).

Where are the pots,:.carpets, or wallpaper patterns created with the help of the
kaleidoscope? Even what:looks like a kalcidoscopic pattern is usually designed by
graphical tools, or, more recently, by computer software. There is, however, a field
where the kaleidoscope really survived, and even made considerable progress: in
education.

KALEIDOSCOPE IN TEACHING OF
GEOMETRIC-CRYSTALLOGRAPHIC SYMMETRIES
(THROUGH A KALEIDOSCOPE SYMMETRICALLY)

In the beginning the kaleidoscope was studied from the point of view of geometrical
optics. Brewster, as we discussed earlier, listed all the possible types of two-mirror
(dihedral) kaleidoscopes, thus indicaling the available types of rosette patterns.
Theoretically there are intmitely many possibilitics: the angle between the two
mirrors should be 180°/n, where n = 2, 3, 4, ... (all the integers greater then one). In
practice, however, the quality of the mirrors severely limits this list. In the case of
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larger n’s some parts vanish because of the reduction of the intensity of light. Clear

patterns are very hard to obtain, even in the case of relatively good mirrors, if n is

greater than 10. The arrangement with two parallel mirrors facing each other, which .
can be interpreted as the case of an infinitely large 7 (i.e., 0° angle), presents images

lined up perpendicularly to the mirrors in both directions (frieze pattern). It is easy

to see, using, for example, a doll in front of one of the mirrors, that the images are

alternating back and forth, facing cach other in pairs at the virtual mirrors.

Ultimately, half of the dolls are looking in one direction, the other half in the

opposite direction. Of course, as in the earlier cases, only a part of the infinitely many

images are visible.

The case of more mirrors in the tube which form a cylinder with an internal
reflecting surface, where the cross-section is a closed polygon, was also considered by
Brewster and other scholars in the early period (here we use the word cylmdcr ina
very general sense; it is not necessarily based on a circle). We may also imagine the
arrangement of mirrors in these kaleidoscopes as a right prism, based on a polygon,
which is open from both ends. Interestingly, there are only four types of such
cylindrical kaleidoscopes which always present periodic patterns without ambiguity.
In the case of three mirrors, their perpendicular cross-section should form a triangle
with one of the following shapes: equilateral triangle (60°, 60°, 60°), half of an
equilateral triangle (90°, 60°, 30°), or right-angled isosceles tnangle (90°, 45°, 45°). In
the case of four mirrors, the only allowed possibilities are the rectangles, mcludmg
the square (90°, 90°, 90°, 90°). We cannot make a cylindrical kaleidoscope with more
mirrors. These restrictions are a consequence of the obvious requirement that at
cach edge of the system the adjoining mirror-faces should form a dihedral
kaleidoscope by an allowed angle of 180°/n. Each of the possible four types of
cylindrical kaleidoscopes presents a part of a theoretically infinite periodic pattern
(wallpaper-like arrangement) on a plane — or in a shallow layer — which is
perpendicular to the axis of the kaleidoscope. The fact that these are the only
possibilities was well known in the 19th century (Brewster, 1819, chap. 11); even the
article on the kaleidoscope in the Encyclopaedia Britannica provided a geometric
proof (Blyth, 1880). In subsequent editions, however, that part slowly disappeared:
first the proof, and then the fact itself, vanished.

The repeated mirror reflections seen in the kaleidoscopes offered a natural model to
represent combined mirror symmetries. In the late 19th century the latter topic, the
theory of symmetries, became ever more important in geometric crystallography. It is
interesting that the  obvious questions in geometrical optics and geometrical
crystallography have some similarities: to list all the possible types of mirror systems
in kaleidoscopes, and of periodic arrangements in ideal crystals, respectively. The two
problems are even more similar if we consider just the symmetries seen in
kaleidoscopes and in ideal crystal structures. We discussed the solution of the first
problem in the case of the classical kalcidoscope. No doubt the crystallographic
question is much more complicated, because we also need other symmetry
operations than mere reflections. Fortunately, these efforts were supported by such
leading mathematicians as August Mobius, Camille Jordan, and Felix Kl¢in. After
many partial results the complete solution was presented independently by the
Russian crystallographer Evgraf Stepanovich Fedorov and the German
mathematician Arthur Schoenflies in 1890-91. Both of them described all the possible
230 types of periodic patterns in 3-dimensional space; these are the so-called spatial
symmetry groups or space groups. Each of the ideal crystal structures can be
characterized by one of these groups. Fedorov also discussed the analogous 2-
dimensional problem and listed all the possible 17 plane groups (wallpaper groups).
The intuitive meaning of this theorem is very simple: if we focus only on the "deep
structure” of 2-dimensional periodic ornamentation, without considering the actual
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shape of the basic motif, we have exactly 17 types of repetition. The arts and crafts
have produced through the ages a very rich collection of periodic patterns on surfaces
— from woven textiles to lattice-works, from mosaics to mural designs — but all of
them can be classified according to these 17 types.

1t is not surprising that Mobius (1849, 1851) and later Fedorov (1883, 1885) became
interested in kaleidoscopes. Both of them approached the crystallographic
symmetries using geometrical methodology, while Jordan, Klein, and Schoenflies
used an algebraic treatment. Incidentally, the cited Mdbius is well-known because of
the famous strip named after him, which became a constant topic of "mathematical
folklore". Another relevant motif which could lead both Mobius and Fedorov to the
kaleidoscopes was their regular work with optical instruments. Mébius, although he
is best known for his mathematical achievements, had various appointments as an
astronomer; at one point he became director of the Leipzig Observatory. Fedorov's
involvement in the subject was connected purely with crystallography and mineralogy:
he. developed optical instruments for measuring the angles of crystals (Fedorov
goniometer, Fedorov optical stage). For illustrating crystallographic symmetries the
carlier kaleidoscopes, which present planar patterns, were not really satisfactory. The
topic requires the study of 3-dimensional structures. Mobius, and later Fedorov
realized, however, that by using three mirrors it is possible to shape such "corners”,
which are suitable for the representation of spatial symmetries without ambiguity.
Such a trihedral kaleidoscope can be obtained for example by standing a dihedral
device perpendicularly on a third horizontal mirror (Fig. 1). In addition to these
types, there

Figure 1: A class of trihcdra;é)or Mabius-Fedorov) kaleidoscopes. This arrangement may represent
infinitely many variable types (90°, 907, 180°/n; where n = 2, 3, 4,..). Indeed, if the vertical edge is hinged
so that the adjacent mifrors can be moved along the horizontal one, that is, we may "open® and “close®
the two vertical mirrors, the system can be easily transformed from one type to any other.

are also three further ones. We may characterize them, similarly to the illustrated
types (Fig. 1), by listing the angles of the three faces at the vertex of the kaleidoscope:
(1) 70°, 55°, 55°% (2) 55°, 45°, 35% (3) 37, 32°, 21° (the numbers are rounded). Mobius
analyzed this question by investigating the triangular tilings, or tessellations,
generated by reflections on a sphere. Using modern mathematical interpretation,
Mobius determined not only all the ty(})es of the suitable triangles (the so-called
Mobius triangles), and the related trihedral kaleidoscopes, but also the types of the
spatial reflection groups with a fixed point. Fedorov, who was aware of Mdbius’s
works, dealt with similar geometric questions in connection with his own theoretical
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%,
and experimental works in crystallography. It is hard to reconstruct whether thce’}&.
trihedral kaleidoscopes did or did not play any relevant role in Fedorov’s pioneering
work - on space-filling polyhedra, where he refers very briefly to kaleidoscopes
(Fedorov, 1885, see, e.g., part 3, remark 1), as well as in the process of enumeration
of the crystallographic symmetry groups. There is no doubt, however, that the new
kaleidoscopes were very useful in illustrating some basic ideas for students. Fedorov
employed various tricks in adapting these instruments for educational purposes. For
example, we may represent the local arrangement of symmetric systems of points
around the vertex of a trihedral kaleidoscope (atoms in a crystal-structure around a
lattice-point) by inserting in it a small ball. Tt is also easy to produce images of
various symmetric polyhedra by pouring liquids into the kaleidoscope. Of course the
whole instrument should resemble an ice-cream cone, in order to hold the liquid.
Moving the kaleidoscope to another position we can easily change the "object”, the
triangular surface of the liquid. Fedorov recommended the application of mercury
which produces exciting silver-colored figures. However, it is better, for reasons of
safety, to use non-poisonous liquids. Another possibility is to use, instead of a liquid,
appropriate vertex-figures made of wire. Obviously it is better to try to make such
experiments with kalcidoscopes than to spcak about them! Indeed we plan to
organize a workshop on kaleidoscopes in' the near future: see the Call for
Kaleidoscopes in SFS (Symmetric Forum of the Society) of this issue.

In the second part of this paper the 20th century developments of the kaleidoscope
will be discussed. Interestingly, some kaleidoscopes gaincd importance even in
modern arts; in this way the focus will, for a while, shift from science back to art. We
will also provide a "periodic table” of all the possible kaleidoscopes shaped by plane
mirrors.

THE PRESENT VOLUME: A "SYMMETROSCOPE"

Let us now turn to our own "kaleidoscope”. Of course it is only a metaphorical
kaleidoscope, but it has many propertics common with the real one. It presents
different pictures at each turn, all related to symmetry. Moreover, it has, similar to
the classical Brewster kaleidoscope with an angle of 60°, a threefold symmetry with
three "axes", that is, questions which were addressed by all of the contributors. This
"kaleidoscope” may also give insight into many disciplines and artistic fields.

On the cover of this issue we have images which are connected not only with art and
mathematics, but also with an interesting event in the history of the concept of
symmetry. All of the three images are derived from a well-known "kaleidoscopic”
figure, which originally had three mirror lines (Fig. 2.a). If we cut this pattern into six
equal triangular sections through the center, just as we cut a birthday cake, we obtain
slices — basic units ~ which are congrucnt (isometric), and each of them is suitable
to generate the whole hexagonal image in an ordinary dihedral kalcidoscope of 60°
(Fig. 2.b). This composite image appears in many.books on computer art and
computer graphics. The figure is, however, older than generally believed. It was the
subject of a composition excrcise on the "whirling triangle” at the Basic Design Studio
of the American architect William S. Huff in 1961, while inr the same year an Indian
mathematician, Prakash Sharma, was led to a similar structure by a note on
triangular doodles (see The Mathematical Gazette, 43 [1959), 34-35 and 45 [1961], 26-
27). An analogous illustration was used by Rutherford Boyd in an earlier article on
mathematical ideas in design (Scripta Mathematica, 14 [1948], 128-135).
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Figure 2: (a) Pm&rammed design Fan Fun by David Kos from the Basic Design Studio of
: illiam S. Huft, Carmnegie Institute of Technology, 1961.
(b) The same design with a marked triangular section (basic unit).

There is an interesting mathematical approach to the basic unit of this composition
by the "three-bug problem” (sce the marked triangle in Fig, 2.b). The bugs are put at
the corners of an equilateral triangle, and at the same time each one starts to crawl
clockwise towards its neighbor. It is easy to sec that each bug will approach the
center of the triangle along a path of a logarithmic spiral, and at any instant they
determine the corners of an equilateral triangle. Drawing thesc triangles periodically,
according to a given time-interval, we derive what is really a set of whirling and
decreasing equilateral triangles, although it is the three spirals that strike the eye.
Note that here we have an angle-preserving process: the angles of the decreasing
triangles are invariant. (Intercstingly, some insects fly toward a light bulb along a
logarithmic spiral, because their oricntation is based on maintaining the visual
perception of light at a constant angle; after a collision they often shilt to a circular
motion around the bulb, which corresponds to keeping an angle of 90° with the radii.)
Fitting together six copies of the basic unit, three clockwise and three
counterclockwise versions, in an appropriate way — or using just one in a dihedral
kaleidoscope of 60° — we obtain the required figure. Martin Gardner, discussing the
thrce-bug problem, also presented the composite hexagonal image, adopting it from
Rutherford Boyd’s earlier article ("Mathematical Games” in Scientific American, 213
[1965], no. 1, 100-104). Gardncr’s articlc was probably the main source of many later
adaptations, taking the topic from classical drawings to computer graphics.

On our present cover, however, the original symmetry is "decreased”. We have a
mirror symmetric version with just one vertical mirror line, as well as two centro-
symmetric versions which arc mirror images. In 1848 Louis Pasteur came across
similar symmetrics. He was working on a problem in molccular chemistry: how the
congruent molecules of the same chemical composition may have different physical
properties, specifically left and right optical activity (rotating the plane of the
polarized light to the left or to the right). He realized that the answer to the problem
lay in the 3-dimensional structure of the molecules. Although the left- and right-
handed molecules are geometrically equivalent by a mirror reflection, in real physical
space no rigid motion can produce this transformation (it would require a 4-
dimensional space, as Mobius remarked). However, if a molecule is mirror
symmetric (has a plane of symmetry), the Icft-handcd and right-handed mirror-
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molecules are not distinguishable (they are superimposable), consequently, there is %,
no optical activity. The same inactivity can be observed in the tase of racemic
compounds, where the distribution of the two kinds of molecules is about equal.
Biochemical processes, however, favour mostly one kind of molecules, which
indicates the possible importance of the topic when studying the origins of life.
Returning to the original geometrical question: exactly those figures have two
versions which miss some elements of symmetry. Specifically, in the 2-dimensional
case it is necessary to exclude the mirror symmetry, while in the 3-dimensional case,
the mirror, the central, and the so-called mirror-rotation symmetry. Pasteur
suggested referring to those molecules which have two versions as “"dissymmetric’
ones, in the sense of lack .of some, not necessarily all, symmetries. Note that the
concept of dissymmetry is not identical with asymmetry where ‘all the possible
elements of symmetry are missing. Indeed, the asymmetry is the extreme case of
dissymmetry.

Using this term in connection with the three non-kaleidoscopic images on the cover,
we can observe that there is a symmetric one with a vertical mirror line, while the two
others give a dissymmetric pair (but they still possess central symmetry, or twofold
rotation). Moreover, adopting the terminology of textile industry as S- and Z-twists of
yarns (left- and right-hand screws), the three images may represent the letters 1, S, Z.
It is even possible to write ISIS with these shapes. Huffs "dissymmetric
kaleidoscopes" also reflect our goals: we should not overstate the symmetries in art
and science, because often the dissymmetry is . more important.

Of course we are aware that our "kaleidoscope” cannot compete with the success of
those of Brewster, Mobius, Fedorov — and of such contemporary scholars or
inventors as Coxeter, Koptsik, and Schwabe — and we can even be criticized, as was
Kircher, for adopting too wide an angle of view. Our goal is, however, to present a
variety of pictures on symmetry before putting the kaleidoscope aside. We hope that
in our case the multiple symmetries do not exhibit maximal redundancy. Let us turn
this "symmetroscope"...

(A related bibliography will be published simultaneously with Part 2 of the article, appearing in the
section Symmetro-graphy, which will include all the cited works.)
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