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Carpenter Center for the Visual
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Cambridge, MA 02138
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History, in particular the
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Award!: The Golden Door Award,
The Intemationaiinstitute of
Bo6ton
Elected MemlJemlips: Vice-President, ISIS-Symmetry; Life Fellow, The American Institute of Chemists;
Life Fellow, The Royal Society of Arts; The American Association of Management
Publications: Color and Symmetry. (John Wiley & Sons, NY, 1971); Preface and contributions to R
Buckminster Fuller's Synergetics. MacMillan NY (1975); Sptlce Structures, their HarmollJ and
Counterpp.int. (Addison Wesley Advanced Book Program, ReadingMA, 1976); Series Editor, The Design
Science Collection. (Birkhiiuser, Bo6ton/Base1/Stuttgllrt); CrimsOn HeaJher, twenty-one Scottish Country
Dances written for the Harvard Scottish Country Dancers. (Royal Scottish Country Dance Society
Bo6ton Branch Book Store)
Exhibitions: Carpenter Center and TIcknor Library, Harvard; Smith ColleglO, Northampton,
Massachusetts; Harrisburg, PA; New York (Dutch Artists in Northeastem United States)

QUESTION 1

Crystals are symmetrical because they are made up out of identical
building blocks (atoms or ions), which tend to surround themselves with identical
environments. Ifwe call the distance between ai an ion or atom of type a and b·, an
ion or atom of type b, rU(a,b), and the crystal constitutes atoms or ions of types -1;, b,
c, d ... etc., then for any pair (a,b) as many as possible of the distances rij(a,b) will be
identical.

This principle, the Vector Equilibrium Principle, accounts for a large number of
inorganic crystalline configurations (Loeb 1970). As a special case, when there is but
a single constituent, a, for instance copper atoms, then any atom a· may be
surrounded by at most twelve other atoms aj' located at three verlices of a
cuboctahedron (Figure 1), whose center is at the roeation af atom ai' (We shall call
these twelve the verticial atoms.) Each of the verticial atoms is equidistant from
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40 A.LLOEB

four other verticial atoms aj as well as from the central atom ai. When each of the
vertical ions or atoms is in rurn surrounded identically by twelve neighbors, and this
process is continued indefinitely, a is generated which has become
known as the (cubically) close-packed latttce. R. Buckminster Fuller has called the
cuboctahedron Vector Equilibrium because of the equality of all the distances from
the vertices to the center and to four other vertices.

Figure 1: Cuboctahedron

Atoms and ions, however, .are not rigid spheres, and the suceess of the rigid sphere
model is somewhat fortuitous. It would be a mistake to deduce from the fact that the
cubically close-packed configuration is quite common, that atoms and ions are rigid
spheres: .they are, in point of fact highly concentrated positive charges, the nuclei,
surrounded by diffuse clouds ofnegative charge, the electrons. The configuration of
the electron cloud is determined by the symmetry of the electric field in which it finds
itself, and that in turn is determined by the configuration of the surrounding atoms or
ions. The very fact that a crystal exists and is reasonably stable under the existing
external conditions of pressure and temperature, indicates that the Energy ;ii
V{rr(a,b)}, is minimized. [We here assume that the total energy may De

as the sum of the separate pairwise interactive energies V{rij(a,b)}.

v

Figure 2a: Interaction potential for a stable pair of atoms or ions
Figure 2b: The same for two tangent rigid spheres

The potential energy of a pair of atoms or ions (a., b.,) is plotted in Figure 2a as a
function of the distance between them, r. The distance rii corresponds to
the minimum value of V. For contrast, V is plotted as a function 01 r for two rigid
spheres in FJgUre 2b. In the latter case a minimum-energy configuration is achieved
when each sphere center is at distance rij from its twelve nearest neighbors. In the
former case, as long as we ignore interactions between all but twelve nearest
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Reflections on RoIalions 41

neighbors, equilibrium would also occur when etu:h atom or ion is at distance rij from
twelve nearest neighbors, for we know that our three-dimensional space cannot
accommodate more than twelve nearest neighbors in suchan array.

Now suppose, however, that interactions between more distant atoms or ions would
play a significant role. The interaction-energy between atoms or ions at larger
distances than the equilibrium distance from each other would tend to destabilize the
cuboctahedral configuration, because the more distant atoms or ions would attract
each other (cr. Figure 2a).Thus it might be energetically more economical to bring
more atoms into a configuration in which there are more than twelve near, although
not nearest neighbors. Such a configuration is shown in Figure 3, a rhombic
dodecahedron. If one ion or atom is at the center of this dodecahedron, then
fourteen others will occupy its vertices; in turn, each of these verticial ions or atoms
may be at the center of an identical dodecahedron. When this algorithm is applied
again, the so-called body-centered cubic lattice is generated, a configuration almost
as common as the cubically close-packed one. Of the fourteen near neighbors, the
eight nearest ones are at the vertices of a cube (hence the name of the lattice),
whereas the six next-nearest ones are at the vertices of an octahedron: together these
fourteen constitute the eight obtuse and six acute vertices of the rhombic
dodecahedron. The six nearest are only 15% closer than the eight next-
nearest neighbors in this configuration.

Fagure 3: Rhombic Dodecahedron

When we examine Figure 2a in the light of the body-centered configuration, we have
to accept the fact that not all nearest and next-nearest neighbors may be at
equilibrium distance. Thus we lose some energy, but this loss is offset to some extent
by the greater number of neighbors to be accommodated in this configuration. The
cost of placing neighbors at a less-than-optimal distance depends on how steeply the
potential-energy curve in Figure 2a rises from its minimum. The steeper this rise is,
the less economical this configuration will be in competition with the close-packed
one.

We conclude that crystalline configurations result from a balance of counteracting
forces. In our examples, the dependence of potential energy of interaction on
separation distance had to be balanced against the properties of three-dimensional
space which limit the numbers of nearest and next-nearest neighbors. Changes in
such external conditions as pressure and temperature may shift this balance in one
direction or the other, and cause changes in configuration known as phase-shifts.
Many elements and compounds form simple crystals in the configurations related to
cubically close-packed and body-centered lattices (cr. Loeb, op.cit.), but other metals
and their alloys, for instance those containing manganese, have very complex
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42 A.L.LOEB

configurations, probably as a result of very delicate balances. Notably, the latter,
complex crystals wi1l also experience many phase shifts when external conditions are
varied, with resulting shifts in the delicate .balances, whereas the simpler.
configurations tend to be stable in the face of changes in external conditions.

Accordingly, symmetry in crystals is the result of the trend for as many identical
building modules as possible to be identically surrounded, but their confIgUration is
the result of a balance between forces which cannot all be simultaneously optimized.
In particular, increase in temperature wi1l also increase entropic randomlZlltion, with
resulting crystalline imperfections. These imperfections are in some instances
responsible for desirable characteristics such as malleability and semi-conductivity.

QUESTION 2 oymme.ry

Above, reference was made to R. Buckminster Fuller's naming the .
cuboctahedron the Vector Equilibrium. Although Fuller is particularly known for his
dome structures, minimal structures in the sense that they cover a maximum volume
with a minimal area, it is remarkable that 'he should have been so interested in
packing with maximal density.

Is the similarity between architectural structures designed by Fuller and the
microstructures of viruses and inorganic crystal structures fundamental or
coincidental? Although the forces may be of quite different natures, the space in
which they act is the same, and the same constraints apply. At equilibrium, the
potential energy wi1l necessarily increase quadratically with displacement from
equilibrium as long as that displacement is relatively small, regardless of the scale at
which these forces act. And the constraints due to the properties of three-
dimensional space wi1l prevail, and favor the cuboctahedron and the rhombic
dodecahedron, at either architectural or microscopic level. The repertoire of
permitted configurations, though varied, is fmite and limited.

A pattern is an ordered array, and structure is the expression of the interrelations
between the members constituting. an ordered array. Pattern recognition is the
recognition of these underlying relationships; such recognition may be quite
subjective. For example X-ray crystallographers are conditioned to relate their
experimental results to a cubic framework whereas solid-state chemists wi1l look for
other polyhedra such as the cuboctahedron and the rhombic dodecahedron to
understand why the atoms and ions form the patterns which they do. (Cf.Loeb,
op.cit.)

The New England Transcendentalists of the nineteenth century believed strongly in
underlying significant patterns in nature. The ability ofa scientist to discriminate
between significant and trivial patterns is a characteristic of genius. A grandnephew
of transcendentalist Margaret Fuller, Buckminster Fuller attributed his own ability to
discern the significant pattern to intuition. We have reason to believe that intuition
may be non-verba1ized knowledge. (Haughton & Loeb, 1964; Loeb & Haughton,
1%5) In any case, one is not apt to discern a pattern unless one is thoroughly familiar
with it. An illustration is the recent discovery of the molecule which was named
buckminsterfullerene: the choice of this name is testimony ·to ·the familiarity with
Fuller's dome structures which the discoverers enjoyed.

Mass production has been blamed for the creation of boring repetitions of identical
structures in our environment; There is no need for such tedium. Nature has had
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Reflections on Rotations 43

fewer than one hundred elements, and, using just carbon, oxygen, hydrogen and
nitrogen has produced endless varieties of life. Gemstones of brilliant variety are
constituted of relatively few different elements and frequently owe their distinctive
color to small impurities or imperfections. It is not the modules but the way in which
they are interconnected that gives us variety. AccordingIy,· designers and architects
need to understand the way in which modules can or cannot be interconnected in
order to create a maximum variety out of a minimum of different modules.

Yona Friedman has pointed out the substantial difference in the way we dress as a
result of confection, the mass production of clothing. Whereas the well-dressed and
well-heeled citizen used to have her or his attire tailor-made, confection has made

available in such variety of sizes and shapes, that we are now able to mix and
match tn a multiplicity of combinations, and with a moderate wardrobe are able to
appear dressed differently at a large number of different events.

Intuition alone does not suffice to understand and exhaustively explore the way in
which things interconnect. Abstract analysis and synthesis will extend one's spatial
repertoire through the use of such parameters of spatial order as symmetry,
connectivity and stability, which constitute the grammar of spatial structure much as
harmony and counterpoint are part of musical grammar.

QUESTION 3

Hans Jaffe has observed that the environment in the Netherlands is
entirely man-made: there are few if any remnants of wilderness. Jaffe feels that
Mondriaan's abstract works reflect this Dutch landscape. Indeed, just as Mondriaan's
Broadway Boogy-woogy with its prominent diagonal element refers to an aerial view
ofManhattan, so his right-angled designs reflect the orthogonal features of the Dutch
man-made landscape.

I am told by Art Historians that Mondriaan was a ftne dancer. I already knew that, as
my mother frequently danced with Mondriaan, but since some Art Historians tend to
discredit so-called anecdotal evidence, one must be grateful for their authoritative
confirmation. My grandfather was friendly with and had business dealings with Sal
SHjper, Mondriaan's friend and collector of his work, and so it was that my mother as
a teenager got to know the artist at the time of his ftrst experiments with abstraction.
Those were the heady times of the periodical De Stijl, and the frrst designs by the
architect Rietveld. (Loeb & Loeb, 1986),

Recently some very trendy stores in the Netherlands have marketed copies of
Rietveld's early chairs, but I have sat in an original one, in the kitchen of Rietveld's
daughter. As a matter of fact, when I turned thirteen, and was given my own room,
its furnishings included one of the ftrst Breuer chairs and a set of AaIto chairs and a
table. As I presently sit behind my computer in my Cambridge study, could I claim
that those· objects in far-away Amsterdam in a too distant past would still influence
my present visual environment? Most assuredly I do, for I am looking at, and just sat
in my Breuer chair: it endured war and transplantation, and its design is stilI valid
and trendy.

When I turn to my right, I see on the wall two four-by-four tableaux of Delft tiles. I
remember my grandfather in his garage (the car was parked somewhere else, about a
twenty minutes' walk away), carefully.matching corners and edges, attempting to
recreate assemblies af tiles which centuries ago graced kitchens and dining rooms,
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44 A. L. LOEB

but since then were .scattered, and in part destroyed. As grandfather was
experimenting (I was about three years old), I was initially intrigued by the flowers,
animals and persons portrayed on the tiles, but shortly I discovered something quite .
fascinating: each tile would have a little motif in each corner. An lot when a correct
match was achieved, four tiles would neatly fit together about a common corner, and
that corner would be surrounded by a pretty, symmetrical rosette, made up of the
corner motifs of the surrounding tiles.

It would be a good many years before I articulated this discovery into the implication
of symmetry generated by an algorithm for putting multiples together (Loeb, 1971).
But the very fact that I so clearly recall this experience from my fourth year indicates
that this was a formative experience. My grandfather died when I was not quite nine
years old, but I recall him always asking my arithmetic teacher how I was domg.

A biographical sketch of the Amsterdam architect Piet L. Kramer (Ed. Wim de Wit,
1983) states: "In 1923, he participated in the competition for the Bijenkorf
department store in The Hague. Although not the winner, he was nevertheless given
the commission; ...[the] design which was actually chosen by the jury, was considered
too advanced by the patron. Kramer's Bijenkorf can be regarded as the last original
Amsterdam School creation...• The patron was my grandfather and Piet Kramer
became a friend of the family, and redesigned the bottom two floors of our own
house. When, years later, I studied at the Amsterdam Muzieklyceum, Kramer's wife
Bodi Rapp was one of my teachers. Patterns and mathematics were indeed part of
my upbringing, and De Stijl, the Bauhaus and the Amsterdam School, characterized
by geometric patterns, were always visible in my living environment.
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Figure 4: Polygonal representation or the teams in a soccer competition: a) The Division comprises an

odd number or teams; b) The Division comprises an even number or teams.

In my 'teens I enthusiastically followed the soccer competitions, and before long
became intrigued with the question how to schedule games between all teams during
the limited number of Sundays available in the soccer season. Some of the regional
divisions had ten, others eleven teams. It was obvious that in the latter case one team
was necessarily idle each Sunday, but I wondered whether it would be possible to
have not more than one team idle each Sunday in the divisions comprismg an odd
number of teams, and none idle in the even-numbered divisions. I solved the problem
graphically, by placing the teams' names on the vertices of a polygon (cf. Figure 4,
where the teams are named A,B,C,...etc.). Surprisingly, the problem turned out to be
easier for the odd than for the even number of teams. I drew a set of parallel lines
connecting vertices, as in Figure 5, representing the matches on the first Sunday. [For
N teams, N being odd, there would be V:z(N-1) games]. For the next Sunday I rotated
the configuration one place (Figure 6), and the next another, until I had rotated all

©
  ISIS-SYM

M
ETRY



Reflections on Rolalions 45

the way around the polygon; each Sunday one team would have been idle, so N
Sundays would have passed, .and Y2N(N-l) games played. Since there are just that
many connections between N items, and my algorithni had not duplicated any
connections, I can be quite confident that I had exhaustively and optimally
enumerated a complete competition schedule .for a division comprising an odd
number of teams.

Figure 5: Eleven-team Competition, first Sunday Figure ,: Eleven-team competition, second Sunday

As said, the method did not quite work for even numbers ·of teams. Figure 7
represents my example, showing ten teams. The first Sunday five games were played,
according to the diagonals drawn in. However, it is evident that after Y2N weeks, in
each of which Y2N games have been played, the pattern repeats, so that the
algorithm only generated Y2N games. I noticed that my method only paired off
teams that were an odd number of steps apart along the circumference of the
polygon, whereas in the earlier example what was an even number of steps around
the polygon in one sense, was an odd number in the opposite sense, so that, to mix a
metaphor, all bases were covered. Accordingly, I had to add a configuration in which
every team was matched with one an even number of places removed along the
circumference of the polygon (Figure 8). This configuration left two teams idle,
which in my case of ten teams were an odd number of places apart, hence did not
need to be included. So. this configuration yielded Y2(N-2) games, and by rotation it
could be used Y2N weeks, yielding in total Y4N(N-2) games. Combination of the two
algorithms yields a total of Y2N(N-l) games on N Sundays, and all was well.

FJgUre 7: Ten-member competition, first Sunday
Figure 8: Ten-member competition, second configuration
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46 A.L.LOEB

Note that I had as a teenager dealt only with the particulars of ten-team and eleven-
team divisions, not the general problem of N teams. After all, I was feeling rather
guilty about taking time off from my homework assignment to play games without
any apparent relevance to my schoolwork; moreover, my father, who had been an
avid soccer player, and presently still follows the progress of his club, was rather
mystified by my theoretical interest in soccer. It had never have occurred to me at the
time to attempt a general algorithm, and it would never have occurred to me to
return to this problem if it had not been for my former student, David Masunaga.
David is a distinguished Mathematics teacher in Hawaii, who took a Master's degree
at the Harvard School of Education a few years ago, and my course as part of his
curriculum. The year after his graduation David returned to the class to conduct a
workshop, and to my surprise brought in the soccer-competition problem. Just as
Moliere's M. Jourdain was amazed to discover that he had been speaking prose all
his life, so I found out that my forbidden games had been mathematics all along. In
point of fact, it is only now that I realize that the reason for keeping two teams idle
when the division comprises an even number of teams is slightly different when that
number is divisible by 4 from what it was in my example of ten teams. However, I
leave that to the reader to determine: it is, in point of fact a matter of symmetry!

As a small child I had been given a board game comprising colored marbles and a
playing board in which holes were located in a regularly spaced array, each hole
being at the center of a regular hexagon at whose vertices were identical holes
identically surrounded (Figure 9). The marbles were to be arranged in the holes to
form certain patterns. I was given a booklet of patterns to copy on the board, but
soon grew tired of this assignment, preferring to design my own patterns.
Surprisingly, I was able to create rectangular, but not square patterns on the playing
board. Unfortunately, this investigation turned into another forbidden game, for I
was told to stick with the assigned fatterns. The game remained suppressed for about
thirty years, when, on the staff 0 MIT's Computer and Systems Group I tried to
understand the structure of the mineral spinel, which is identical with that of the
ceramic cores which we were designing for the memory of the Whirlwind computer.

Figure 9: Hexagonal Array

I was not making much progress, and instead felt inclined to doodle: I wanted to
subdivide the hexagonal net such that the subdivisions each formed a hexagonal array
geometrically similar to the original; Figure lOa shows the subdivision into three,
Figure lOb subdivision into four such sub-arrays. The question was whether the
hexagonal array could be subdivided in this fashion into any number of sub-arrays.
Certainly this appeared to be a forbidden game having no useful application when
the sponsor is expecting to be enlightened about the spinel structure!
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Figure lOa: Subdivision of the hexagonal net into three geometrically similar subarrays
Figure lOb: Subdivision of the hexagonal net into four geometrically similar subarrays

Well, I was obsessed with TY doodle, and found that the hexagonal net
may be so subdivided into k +kl+I subarrays, where k and I are positive or negative
integers or zero. The two examples of three and four subarrays correspond
respectively to the combinations (1,1) and (2,0). The combination (2,-3) would lead
to seven More to the point, however, are no values of the
integers k and I which would make the expression (k +kl+I ) equal to either 2 or 8.
And, 10 and behold, that gave me the clue to an understanding of the spinel structure
(Loeb, 1964 and Loeb & Casale 1963)! Why the game of a five-year old should
surface thirty years later to help solving a problem is beyond my understanding; this
experience taught me, however, to trust my intuition, that unverbalized knowledge, a
bit more, and to give more importance to the role of games.

As a result of the war, I never fmished high school. I entered the University of
Pennsylvania on the basis of College Board admission exams, and at age twenty was
admitted to Harvard's Graduate School, which granted me a Ph.D. when I was
twenty-five. No time for forbidden games any longer! After another five years I
returned to the Netherlands for a year, and attended an international mathematical
congress as a delegate for the Society for Industrial and Applied Mathematics. At
that congress I saw for the f11'st time the original works of M.C. Escher, of which I
had only seen reproductions in Life magazine. In 1960 I met Escher at a meeting of
the International Union of Crystallographers in Cambridge, England, and a close
friendship developed (Loeb, 1982a,b).

Above I mentioned my grandfather's collection ofDelft tiles, which is presently in the
Rijksmuseum in Amsterdam. It is considered by some to be second only to· the
Loudon collection in the Prinsessehof in Leeuwarden in the north of the
Netherlands. This museum was originally the residence of the stadholders of
Friesland, the direct ancestors of the royal house of the Netherlands. In the garden of
the museum is a small column, tiled with anEscher design, commemorating the fact
that Escher was born in that palace when it had been subdivided into private
residences. Indeed, tiles were part of our cultural heritage, and probably shaped our
outlook.
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