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1. Background
First we look back at the history of prefabricated building systems. Prefabricated elements in buildings are almost
,as old as the history of house building itself, many parts of the house, such as the wall and roof, have throughout
the Ifistory been made of identically formed elements. Since the industrial revolution, mass production has become
an important part of the building industry. The first major milestone in the development of industrial methods
in the arcltilecture was probably Paxton’s Crystal Palace erected in 1851 [Kie84]. The Crystal Palace as well as
,all subsequent prefabricated buildings possess attributes which are different from those of traditional buildings.
Construction problems have usually more consequences throughout the design of prefabricated buildings then in the
design of traditional ones. Thus, the design of construction parts play an hnportam role in the design ofprefabricaled
buildings. Many f,’unous architects, such as Buckminster Fuller, Jean Prouve o, Konrad Wachsmann perceived the
necessity of studying construction problems. Wachsmann especially, who led the Division of Building Research at
the University of Southern California in the 60’s, has made many contributions to the development and analysis of
constmction parts of prefabricated building systems.

The design of constluction parts is a complex task, involving geometric, static, kinetic, esthetic, and other
problems. Geometric problems, however, are often dominant and have larger impact on the design then other
related problems. Since repeating symmetrical patterns can provide economically and esthetically appealing solu-
tions, architects became interested in crystallography, cell biology and group theory [Pie78], [Wil72]. Although
symmetrical strnclures spread fast in the architecture and interesting constructions emerged by designers such as
Buckminster Fuller, Felix Candella, Pier Luigi Nervi or Frei Otto, not much research was done on the geometry of
construction parts leaving numerous problems still unsolved.

Here we don’t attempt to solve any of these problems, however, we show connections between symmetry
concepts, such as filings and building conslxuctious.

2. The construction problem
Let us consider a number of square slabs, without specifying the function of the slabs as construction parts. The
slabs are connecled as shown in Figure 1 by male ,and female elements on each edge. One can easily see that the
conuection of the slabs is realizable if and only if neither of the two slab patterns to be connected has a conca’ce
boundary. For example, we can connect three slabs as in Figure l(b) but we cannot connect_a forth one to them.
We can solve the problem by connecting two pai~ of slabs as in Figure l(c), or connect all four slabs at once by
rotating the slabs a.s in Figure l(d). In both cases there are other restrictions according to the number of slabs to be
connected by one movement. Another method of connecting slabs as, e.g. in Figure l(e) has other cosequences,
caused by the static properties of the connecting parts.

Summing up the consequences of these examples, we can see that the geometrical form of the slabs and the
* current address: Florida International University, School of Computer Science, Miami. FL 33199, USA
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Figure 1: Connection rules for buildhlg lesselalion from square slabs

connecting p,’uls determines important properties of the entire system Such properties are:
1. the oder of assembly of the elements (which elements can be connected to which one and what kind of pattern
can be achived),
2. the motion of the elements to produce a connection,
3. static characteristic of the system.
However, according to these points some geometrical properties of the slabs do not play any role, e.g. the size of the
slabs or the fact that they are square. The above properties are valid for any rectangular tesselation. Furthermore,
the exact form of the connection is irrelevant because all connections that allow only one motion in one direction
in the plane of the tesselation possess the same properties.

Analysis of several construction systems has shown that such geome~ical or topological characteristics imply a
couple of fundanlental rules. The knowledge of these roles can support the design process and lead to solutions that
will probably not be found without them. By following the rules, buildings can be cons~ucted from elements with
very few data, in contrast to the usual documentation that comalns a lot of unnecess,’Lry, often redundant information.
In the realisation phase, it will be possible to use the roles for the automation of the building procedure. With a set
of building elements, a list of connection rules and a description of the pallem, the assembling procedure can be
done by robots, as is the case for other industrial products (machines, cars, etc.).

3. Tiling the platte
The paUeru of a brick wali surface, a prefabricated cmlain wa~l facade or ~he surface of a space grid are two di-
mensional tilings. We are quite fortunate that filings of surfaces, especially plane surfaces were studied extensively
throughout history.

It is not our purpose here to present various tiling problems, but in order to find connections to construction
problems we have to know some basics about plane tilings. A tiling T is a family of entities (closed sets) T =
{t~, ~.,, ...} called tiles that cover the plane without gaps or overlaps of non-zero area. Furthermore, we assume
that the tiles are topological discs, obtained from a cixcular disc by continuous deformation (i.e. no tile has disjoint
parts or holes in it). We also want to consider here only files with finite a~as. A partition of the tiles into congruence
classes is possible, i.e., there is a fanlily S = { Ph P2,..., Pk } of closed sets such that each tile t~ E T belongs to
exactly one of these sets and all the tiles of a set Pj are congruent.

A tiling T is called k-hedral if the number of congruence classes of S is k. For k .=1,2 and 3 the tilings
are called monohedral, dihedral and trihedral, respectivelly. Because of the preferably small number of different
elements of prefabricated building systems we a.re interested only in small k values. Figure 2 shows an example of
a monohedral tiling that occures commonly in architecture. Given a family S of congruence classes or tile types,
we assume unlimited supply from tiles of each tile type. The first basic question is whether any given set of tile
types allows a tiling of the plane. This question is equivalent to ask for an algorithm (or.computer program) that
can decide whether such a tiling exist. It has been shown that this question can not be answered, even for just a
subclass of plane filings, suggesting that the general filing problem is undecidable, too. We will have the same
difficulty in order to answer the opposite question: what kind of tiles can tile the plane? Although no such general
characterization exist, them are methods providing partial answers.

If a fanfily of tile types allow us to tile the plane then the next question is how many different ways are pos-
sible. If we have only regular hexagonal tiles then we have only one tiling possibility. This tile family is called
monomorphic. On the other hand, with square tiles there ate uncountable many tiling possibilities, since each row
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Figure 2: Monohedral tiling of a facade grid designed by L. Costa and O. Niemeyer.

(or column) of a square grid can be "slide" in infinitely many ways relative to the next row. Figure 3 shows slabs
whose connections allows "sliding rows". Between these two extremes, however, there are many other possibilities.
There are also many open questions about tiling possibilities to the same set of tiles [Grue81].

Another basic propet~ of tilings is their symmetry. A m0nohedral filing T is called isohedral if given two tiles
el and 4./there is _a_symmetry transformation of the entire tiling which maps t~ onto tj. These t~’ansformations form
groups, where the most general of them is the automorphism group of the tiling. As K. Reinhard showed for the
Euclidian space [Rei28] and H. Heesch for the plane thee35] there are monohedral filings that axe not isohedral.

Any isohedral tiling belongs to one of 81 classes that are presented in [Gru’~7]. Although there have been
many previous attempts (such as [Kep40], [Fed00], [Haa32], [Sin38], [Wo17~,], thee63], or thee68]) to enumerate
a certain class of plane tilings, non of them can be applied as mullifarious as isohedxal filings. Since on the one
hand we know the construction rules for isohed~al filings and on the other no attempt have been taken yet to apply
them to architectural design, isohedral filings provide an excellent teaching and research topic for Computer Aided
Design as it was shown in [Car86].

4. Non-periodic filings
A tiling is called periodic if there exist two non-parallel translations which map the tiling onto itself. Periodic
filings can be constructed from periodically repeating "patches". Isohedral tilings are certainly periodic, but not all
periodic tiling are isohedral. To the discovery of non-periodic filings led a recreational puzzle of P.A. MacMahon
[Mac21]. It has square dominoes (or rather monominoes) with coloured edges and a square grid or checkerboard.
The coloured dominoes, or tiles can be rotated but not reflected. We also have an unlimited supply of tiles of each
type and the problem is to tile an area of the checkerboard such that a) the tiles cover the fields of the board and b)
abutting edges have the same colour.

If we replace the colours by connection elements and the flies by (rectangular) prefabricated elements then we
have a familiar construction problem, schematically represented in Figure 4. If we also change the connection rules
a little bit then the analogy between MacMahon’s puzzle and construction problems becomes even more apparent.
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Figure 3: Prefabricated elements (slabs) that provide ,an arbitrary number of different tilings. The geometry of the
joints detem~ines not only the shape of the tiling but also many other features (assembling method, static, dilatation,
etc.).

Let’s assume that we have pairs of colours rather than just an arbitrary set of colottrs such that each colour has
its complement, e.g. blue-red, yeLlow-green, black-white, etc., and abutting edges are of complementary rather
than the same colour. An exan~ple of such complementary connections is shown also in Figure 4. We can easily
recognize that all we did is to translate colours into different joints.

Because of the flexible and variable nature of design problems, we are interested in indefinitely enlargeable
tilings, i.e., those that can tile the entire plane. However, as mentioned earlier, the filing problem is undecid-
able.From the undecidability of the tiling problem follows that there are sets of tiles that tile the plane but not in a
periodic fashion.

The results on non-periodic tilings have strange consequences for the design of consimction parts: We can
design prefabricated coustmctlon elements which can be assembled only in a non-periodic fashion. Or we may
have a set of prefabricated elements that can be arranged in periodic as well as non-periodic fashion. This means
that the discovery of non-periodic tilings provides us new, previously unknown design possibilities. Recently
H. Lalvani has drawn attention to such a possibility for space frames (see [La186]). This marks, however, just the
beginning of an extensiv and exciting research in both; structural and architectural design.

5. Slmce lilings
Although all tiling problems of the plane have a counterpart for the space, much less is known about three dimen-
sional tilings then about two dimensional ones. Since regular and semiregular polybedras play an important role in
crystallography, polyhedral packing problems are fairly well explored. Polyhedral packings and their applications
in architecture and design are represented hi [Pie78] mid [Wil72]. Space filling polyhedral packings (or tiling, s)
are commo,l in today’s architecture, see [Bor68j, [Mak65] [Men75] or [Fu173]. An entirely new branch of civil
engineering emerged tliat is concerned with tile study of space structures. In particular morphological aspects of
space structures as it is discussed e.g. in [La186] show the close relation between space structures and tilings. Let
us demonstrate it by the following example.
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Figure 4: Tiling problem with prefabricated elements. Different connections can occur on each side of the panel
or slab.

MacMahon extended the idea of thecolomed dominoes for three dimensions. In the following example we
,also have coloured cubes as a model for a panel system. The system I have in mind might be the one of Gropius
,and Wachsmann. Wachsmann improved the panel joints later such that in his new system there was no need for
additional connection parts (locks), the panels were held together by themselves. In both systems the joints of the
p,’mels a~e the s~mle horizontally and.vertically (Figure 5).

A basic question we can ask is in how many different ways can a room be built from the panels and how can
rooms be added to each other in all 6 directions. Without loss of ~enerality we can simplify the problem by looking
at square panels and cube units (cells) built from the panels. Thus, the question is how many different cells are
possible and how they can tile the space. This can be, however, easily transformed into a square domino problem
with two colours. Each cell is built from 6 dominoes whose edges are marked with either -let us say- blue or red
colour. Since the dominoes can be rotated also in the space there are 4 different dominoes shown in Figure 6. Here
the connection rules of the MacMahon’s puzzle are modified such that abutting edges have complementary colours.
Also each domino is coloured on both side such that each side is the complement of the other (see Figure 6).

After defining the connection roles, the number of different ceils can be easily calculated by Bumside’s lemma
(a combinatorial method for counting equivalence classes of permutations that form a group). This number is 186
,and both, the generation method and a complete list of cells are represented in [Ha186]. Having the set of all ceils
or a subset of it we can try to till the space by glueing cells together. Two cells can join if they share a common
face (domino). It is not difficult to see that the 186 cells can fdi (or tile) the space in many ways. Obviously, we
are interested only in filings with convenient properties. In [Hal86] there are filings represented that are built from
identical dominoes.

It sin~plilies the representation and allows us to consider ceils rather then dominoes if we conve~l the colouring
of the domino edges into the colouring of-the cell edges. Each edge of a tiling contains four coloured domino
edges. As Figure 7 shows there are two configurations possible: the colours define either a clockwise or a counter
clockwise "rotation". The same is true for a single cell.

By looking at the set of the 186 ceils we can find three subsets of cells which are built from exactly one domino
type. Two of them have just one ceil and the third one has 8. Each of the two sets with one cell allows only one
tiling shown in Figure 8.

Using the elements of the third set the authors found 5 filings which are, however, probably not the only ones.
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Figure 5: Connection examples of prefabricated panels from [Wac61]

Figure 6: The four different dominoes and the correspondig panel schemata.
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Figure 7: Colouring the edges of the tiring or cubic cells with the help of the colours of the dominoes.
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Figure 8: The only possible tilings with the domino types c ,and d in Figure 6. The thick lines represent clockwise,
the thin ones counter clockwise rotation (or vice a versa). The "translation" of tlfs model into e.g. Wachsmann’s
General Paz~el System is straight forward.
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Tlius, this is still ,an unsolved problem. But there are many other unsolved problems with the ¢oloured cells yet that
can probably solved by further investigation of the related tiling problem.
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