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STRUCTURES AND META-STRUCTURES

Haresh Lalvani
School of Architecture, Pratt Institute
Brooklyn, New York 11205, U.S.A.

This presentation deals with spatial patlerns termed space structures , and the patterns
underlying these patterns. The patterns-underlying-patterns are termed meta -structures (or
meta-patterns). This work is based on author's previous work [1,2] which suggests that just as
patterns have a structure, as determined by the organising principles of symmetry, topology or
geomelry, meta-patierns also have a structure which is determined by the same ordering
principles. That is to say, meta-patterns have a symmetry, topology, and a geometry, and in this
sense both patterns and meta-patterns are self-similar.

Among the meta-structures, the more interesting and useful cases are the
higher-dimensional structures, principally n-dimensional cubes or n -cubes . In author's
previous work, n-cubes have been shown to serve as organising and transformational diagrams for
families of regular-faced structures and some of its derivatives, namely, polyhedra, plane
tesselations, polyhedral packings, and more recently, infinite polyhedra and non-periodic packings
of icosahedral polyhedra. In all cases, the structures and their transformations are characterised
by the underlying Boolean logic of the n-cubic space and are governed by higher-dimensional
DeMorgan‘s laws relating unions, intersections and their complements. The struclures are
correspondingly indexed in binary combinations of 0's and 1's.

In a different field, that of movement studies, this concept has been used by the author 10
organise Rudolf Laban's movement “efforts” in a hyper-cubic space [3]; we know of this
dance-theoretician's work from the better known Labanotation system for dance. In a broader
sense, meta-structural ideas hold potential for organising concepts both within and between a
wide variety of disciplines, and form the basis of a new science [4]. Goranson suggests
applications in artificial intelligence {5] and Zellweger has used similar ideas for Logic [6].

The concept is illustrated with the example of plane tesselations and polyhedra, though the
idea can be exlended to higher-dimesnional space structures. The tesselations and polyhedra are
organised according to their symmetry into-a 2-dimensional lattice where each distinct symmetry
occupies a distinct vertex of this lallice and is determined by the complimentary pair of angles of a
right triangular fundamental region. Inter-symmetry transformations take place in this lattice
plane. If we restrict to mirror-symmetric structures, a family of 16 topological structures are
possible for each symmetry from four basic types of transformations within the fundamental
region. These 16 are arranged on the vertices of a 4-cube (Fig.1; example shown for icosahedral
symmetry), and each symmelry has ils own 4-cube associated with it. This extends the
meta-space into a hyper-cubic lattice within which the structures transform continuously to one
another both within and between symmetries. The edges of the meta-lattice provide direct
transformation paths between structures, and higher-level transformation paths are along the
face, 3-cell and 4-cell diagonals of each 4-cube.

Through the addition aof three other transformations based on special subdivisions of the
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fundamental regions, the 16 structures within each family can be converted into 128 struclurgﬁ&
which can be organised in a 7-cube space. This space decomposes into sixteen 3-cubes on the
vertices of a tesseract, or eight 4-cubes on the vertices of a 3-cube (Fig.2; fundamental regions
shown). New transformations (e.g. dualisation, frequency, handedness, etc.) can be continually
added, extending the meta-structural space correspondingly into an increasingly encompassing
meta-space for defining, generating, and transforming complex space structures. Such a system is
open-ended and provides a simultaneous way of classification, generation and transformations of
space structures. The open-ended nature of the system makes it more complex than the I-Ching,
the Chinese system of changes, which is restricted to 64 hexagrams.

A possible generalised model (Fig.3) for a system of changes with multiple parameters
and hierchichies is a recursive n-cube (or n-cubic lattice) which can be decomposed downwards
into i-cubes (i=<n) on the vertices of an (n-i}-cube, where each i-cube itself can be decomposed
into j-cubes (j=<i) on the vertices of (i-j)-cubes, and so on. In a similar way, the n-cube can
grow upwards into larger and larger super hyper-cubes. Though the application of such a model to
space structures remains to be fully established, aspects of the present work point in that
direction. A promising application is in the area of “shape grammar"” as supported by our present
studies in architectural form-generation.
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The transformations between structures can be discontinuous (discrete or digital mode) o

or continuous (analog mode) , providing two fundamental models for transforming information.
The discrete transformations change a structure to another by changing 0's fo_1's or vice versa in
an on-off manner. The analog transformations change a structure in a graded manner, from 0
through 1. The latter are gradual, continuous and incremental changes. Both types of
transformations provide a natural basis for computer animation of structures. Both provide
alternative modes of meta-structural thinking. The discrete 0-1 changes are well-known from the
binary system used in computational sciences. The continuous 0-thru-1 changes provide a basis
for a new transformational logic.

The concepts presented lend themsleves naturally to computer-animation. Computer-
animated continuous polyhedral transformations can be seen in a collaborative project with
R.McDermott and Patrick Hanrahan [7]. Continuous transformation of the Penrose tiling can be
seen in a joint project with David Sturman [8]. An interesting fallout of such a system of a
continuum of transformations is the new class of hyper-Escher patterns (Fig.4). These are
higher-dimensional analogs of Escher's metamorphic patterns.
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