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SYMMETRY AND ASYMMETRY IN THE ACTIVE VIBRATION CONTROL +

S.Kravchenko (Moscow)

Attention to active vibration control problems has increased
in recent years. The proposed applications are many
complex technical projects, such as robotics, aerospace
structures, track/vehicle systems and others. Active vibration
control systems using the optimal feedback can reduce the
destructive vibration and noise effects on technical and
operating characteristics and on the health of people [1,2]. This
paper is concerned with important role of symmetry and asymmetry
in active vibration control systems design.

1. It is well known that in symmetric, many-degrees-of-freedom
linear control systems it is possible to provide the autonomous
vibration control of every mode ([2). In this case the modal
decomposition simplifies the stability and performance analysis,
because every mode control problem can be solved separately, like
for a single-degree-of-freedom system. For example, let us
consider the vibrating beam with two active vibration isolators
(Fig.1) at the beam ends [4].

Y, Yy

Fig.1

Taking into consideration the n first beam normal modes, the

equations of motion are written in control theory terms:

2 2, _ 1 a ,_
(s + kaks +wq = mkzwkjfj' k=1,n

a _ s
fj = wj(s)le 3—112 (l)
n
Y. = 2 Q0. .
J i‘:l 1%1], J"’llz
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where qy. Wy kk. m are the generalized coordinaté;
natural frequency. damping and generalized mass of the k -th
mode; yj are the displacements of the beam ends, where the

isolators are attached, ij is the k -th normal mode,
wj(s) are the trasfer functions for each loop, s - the
differentiation operator.
If it is assumed that the beam and the control loops are
symmetric after the normalisation ( 75% is the new generalized
mass) one can find all the complex natural frequencies of the

system (1) by solving characteristic equations of the form :

- 2 2 _ 2 -
Dk(s) = 8° + Akwks + o I.ﬁ-kW(s), k =1,n (2)

Thus the property of symmetry helps to estimate the critical
frequences and feedback gains of the rigid object
multi-degrees-of-freedom control systems, by considering single
low-order subsystems, which can be described by simple
characteristic equations.

2 The advantages of the symmetric structures are well known in
the vibration control theory [1,5]. Only in symmetric structures
it is possible to uncouple motions, and solve the problem of
vibration control for each type of motion seperately. In this
case there are used the principles of mutual compensation, etc.
[1,5]. Vibration isolation problem for symmetric structures very
often can be solved by the passive vibration isolation. But in
practice for some constructions it 1is very difficult to keep
symmetry of the structures under all operation conditions. For
example, the mass or inertial parametres of the structure may be
modificated during the operation. In this case it may be more
advantageous to use the active vibration control not to reduce
the vibration, but to make the real structure vibration to be
like the vibration of the absolutelly symmetric system. This
formulation implies some special methods of control system
design,which can be explained using the previous example (Fig.1l).
Assume that the rigid body is asymmetric. Then for the dynamic
symmetry of points 1 ‘and 2 vibration one can find the needed
transfer functions ratio wl(s)/wz(s) by substitution the
expression |y1| = |Y2| in (1).
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In this problem the principles of mechanical vibration
parametres control [1,5] are used for the assigning the property
of dynamic symmetry to the vibration of real asymmetric
structures.

3. The inverse problem can be also solved using the active
vibration control i.e. it is possible to introduce the optimal
asymmetry into the symmetric structures vibration. This fact can
be used for the vibration reduction of the self-excited
nonconservative mechancal systems (such as rigid wunbalanced
rotor shaft, structures subject to flatter, etc.) to increase the
dissipation of some low-damped modes by strengthening their
coupling with the heavily damped modes.

Consider two neighbouring normal modes in (1). Assume that
the first mode Wy has the dissipation much 1lower than the
second one Wy ( kl« lz ). Let wl = kl, w2 = k2 ,Where k1

and k2 are some feedback gains. If it is assumed that the
original mechanical structure (e.g. beam)is symmetric, one can
write the characteristic equation of two coupled neighbouring
modes, as follows:

[52+}\1wls+1-a1(1+a)][sz+}\2wzs+w§—a2(1+a)]—alaz(l-a)2 =0 (3)

where a, = kl/ml' a, = kl/mz, a = kz/k1 is parameter, which

describes asymmetric control. The equation (3) can be
analityically treated by the root loci method. Fig.2 shows the
root 1loci of the:, .equation (3),when the parameter a is
varied.In the case of symmetric control a=1 ( k1 = k2 ) the

coupling between two modes is very low - the starting points are
marked by stars (Fig.2). When a increases, root loci approach
each other,i.e. rich damping mode Wy gives some dissipation*to
the poor one Wy . There is an optimal value of parameter a
(Fig.2), when the coupling between modés reaches maximum, and

at the same time there is the greatest value of the damping
5max equal for both modes:

émax = -0.25(}\1191 + Azwz)
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Equation (3) gives the analitical expression of the optiifal
parameter a* , which helps to determine the best control

points which provide the maximum coupling connection between the
modes.
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k2w2/2 Bmax lel/z Re
FIG.2
CONCLUSION

The examples show, that it is very useful to understand the
role of symmetry and asymmetry when designing the active
vibration control systems.
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