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ON 3-PERIODIC MINIMAL SURFACES. I. SYMMETRY AND DERIVATION.
KOCH, Elke

Institut fir Mineralogie, Universitdt Marburg, Hans-Meerwein-Str.,
D-3550 Marburg

A minimal surface in 3-dimensional space R3 is defined as a sur-
face with mean curvature zero at each of its points, i.e. the two
extreme values of curvature (main curvatures) are equal in magni-
tude but opposite in sign for each point of the surface. Thus all
points of a minimal surface are saddle points.

In crystallography, especially those minimal surfaces have at-
tracted attention that "are periodic in three independent direc-
tions and, therefore, may be related to crystal structures. In
this connection mainly those surfaces that are free of self-gnter-
sections seem to be of interest. Such a surface subdivides R” in-
to two regions or labyrinths such that each labyrinth is connected
but not simply connected. If the two labyrinths are congruent the
intersection-free, 3-periodic minimal surface is called a minimal
balance surface (Fischer & Koch, 1987).

The symmetry of a minimal balance surface is best characterized

by a pair of space groups G-H: G describes the full symmetry of
the (non-oriented) surface, and H is that subgroup of G with in-
dex 2 which consists of all symmetry operations that do not inter-
change the two sides of the surface and the two labyrinths. 0b-
viously, the pairs G-H correspond uniquely to the proper black-
white space groups (c¢f. also Mackay & Klinowski, 1986).

Let us consider a symmetry operation s of G that does not belong
to H. Then s interchanges the two sides of each minimal balance
surface with symmetry G-H, and all fixed points of s must lie on
the surface. This property, however, is inconsistent with the ab-
sence of self-intersections for minimal balance surfaces if s is
a 3-, 4- or 6-fold rotation, a reflection or a 6-fold rotoinver-
sion. As a consequence, certain space-group pairs G-H are incom-
patible with minimal balance surfaces. A detailed examination of
the 1156 types of group-subgroup pairs with index 2 shows that -
for the reasons described above - only 547 of them are not incom-
patible with minimal balance surfaces.

For these 547 types of space-group pairs all 2-fold rotation axes
and all (roto)inversion centres 7, and 4 have been tabulated
that must be located on each minimal balance surface with that
symmetry (Koch & Fischer, 1988). This knowledge gives an aid for
the derivation of new families of minimal balance surfaces. Espe-
cially useful are 2-fold rotation axes which exist for 352 out of
the 547 types. Considering only the sets of all 2-fold axes be-
longing to G but not to H, 52 different configurations of straight
lines on minimal balance surfaces result. In 18 of these cases
all 2-fold axes are 3-dimensionally connected, in 12 cases they
form infinite sets of parallel plane nets. Both situations are
favourable for the derivation of minimal balance surfaces:
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(1)

(2)

In a 3-dimensional connected set of 2-fold axes skew polygons
are formed that may be spanned by disk-like surface patches.
Such a surface patch may be continued with the aid of those
2-fold rotations that correspond to its straight edges. If the
original skew polygon has been adequately chosen the resulting
infinite surface is free of self-intersections, i.e. it is a
minimal balance surface. An adequately chosen skew polygon has
to fulfill the following conditions: (i) All its vertex angles
must be chosen as small as possible; in particular, no angles
larger than 90° are allowed. (ii) The skew polygon must not be
penetrated by a further 2-fold axis belonging to the same set.

The 18 configurations of 3-dimensionally connected 2-fold axes
give rise to 15 families of minimal balance surfaces that may
be generated from disk-like spanned skew polygons (cf. Schoen,
1970; Fischer & Koch, 1987; Koch & Fischer, 1988). Eight of
these families had not been known before.

The 12 configurations of 2-fold axes that disintegrate into
parallel plane nets are compatible with different kinds of
surface patches. Again an original surface patch may be con-
tinued with the aid of the 2-fold rotations referring to its
boundaries.

(i) If all plane nets are congruent and if at least half the
polygon centres for a pair of adjacent nets lie directly

above each other, catenoid-like surface patches may be spanned
between neighbouring polygons from adjacent nets. Such cate-
noids give rise to seven families of minimal balance surfaces
(cf. Schoen, 1970; Koch & Fischer, 1988), one of which had not
been described before.

(ii) If plane nets of two different kinds are stacked alter-
nately upon each other surface patches may be spanned that
have been called branched catenoids. A branched catenoid is
bounded by a convex polygon at one end and by a concave poly-
gon with one point of self-contact at its other end. The con-
vex polygon stems from one of the more wide-meshed nets,
whereas the concave polygon is formed by two, three or four
polygons with a common vertex of an adjacent close-meshed net.
Branched catenoids refer to three new families of minimal
balance surfaces (Fischer & Koch, 1989a).

(iii) Congruent parallel plane nets stacked directly upon each
other allow surface patches that have been called multiple
catenoids. A multiple catenoid may be imagined as resulting
from fusion of two, three, four or six neighbouring catenoids.
It is bounded by two congruent concave polygons with one point
of self-contact each. Multiple catenoids give rise to eight
new families of minimal balance surfaces {(cf. Karcher, 1988;
Koch & Fischer, 1989a).

(iv) Configurations of 2-fold axes that disintegrate into
parallel plane quadrangular nets are compatible with 1-dimen-
sionally infinite surface patches, called infinite strips.
Such an infinite strip is bounded by two infinite (zigzag or
meander) lines. The strips may be regarded as resulting from
fusion of an infinite row of neighbouring catenoids. In most
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cases infinite strips constructed in this way produce minimal
surfaces that may be also built up from finite surface pat-
ches as described above. In two cases, however, minimal sur-
faces of new families are formed (Fischer & Koch, 1989b).

(v) For configurations of 2-fold axes that disintegrate into
congruent plane parallel nets stacked directly upon each
other the catenoid-like surface patches [cf. (i)] may be re-
placed by more complicated ones, called catenoids with spout-
like attachments. For this, spouts are attached to the “"faces"
of the catenoids resulting in surface patches with two, three
or four additional ends that are not bounded by straight
lines. Spouts of neighbouring catenoids are united to handles
or to three-armed or four-armed handles, respectively. Six
families of minimal balance surfaces correspond to such sur-
face patches (Koch & Fischer, 1983b); only one of these fami-
lies had been described before (Schoen, 1970).

In addition, two families of minimal balance surfaces have been
derived which contain skew 2-fold axes in three independent di-
rections (Fischer & Koch, 1987, 1989c; Koch & Fischer, 1988).

Two families of minimal balance surfaces without 2-fold axes are
known so far, the gyroid surfaces (cf. Schoen, 1970; Fischer &
Koch, 1987) and orthorhombically distorted P surfaces (cf. Kar-
cher, 1988; Fischer & Koch, 1989c).
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