Symmetry of STRUCTURE
an interdisciplinary Symposium
Abstracts I.

Edited by Gy. Darvas and D. Nagy

Budapest
August 13-19, 1989
Hungary
SOME EXAMPLES OF THREEORTHOGONAL OBJECTS OF NONEUCLIDIAN SYMMETRY

O.A. Balakshin, V.A. Bunin, Y.A. Ignatief
Mechanical Engineering Research Institute
Moscow, USSR

Objects of three dimensions and local similarity, especially threeorthogonal ones, are of great interest in biomechanics, crys-
tallography, architecture etc. (Petukhov, 1987). Analytical descrip-
tion of such objects is very difficult because of the lack the third
coordinate, which distinguish oneself by Nature of its numbers from
the first (real numbers) and from the second (imaginary numbers). It
is well known that first and second coordinates are usually used in
obtaining 2-dimensional objects of local similarity, that is in usual
conformal mapping. There are given in the Fig.1 (S,Y,M,M,E,T,R,Y)
some examples of threeorthogonal new objects of noneuclidian symmet-
y: a "Mathematical naturmort". For instance, the "COCHLEA", Fig.1E,
and its analytical apparatus was described earlier (Bunin, 1985).
The curved ellipsoid-"CUCUMBER" may be chosen by equations:

\[X = \frac{B\xi\eta}{\xi^2 + \eta^2}, \quad Y = -\frac{B\sqrt{(\xi^2-1)(1-\eta^2)} \cos \varphi + \eta^2}{\xi^2 + \eta^2}, \quad Z = \frac{-\xi}{\xi^2 + \eta^2}(1-\eta^2) \int \xi \eta \cos \varphi \, d \varphi, \quad B = \sqrt{3}, \]

\[\xi = (3\xi^2 \eta^2 + 3(\xi^2 - 1)(1-\eta^2) + 4B\sqrt{(\xi^2-1)(1-\eta^2)} \cos \varphi + 4. \]

To obtain coordinates X, Y, Z we assume reasonable values of \(\xi, \eta, \varphi \).
Resulting 3-dimensional coordinates are presented in the Fig.2. Cal-
culation of such objects based on a system of numbers with three
units of different Nature 1, 2, 3 (Balakshin, Bunin, 1989; Bu-
nin, Chudinov, 1976). A circle means the importance of the Nature
i.e. a "mathematical dimension" of a number, for example: a number
is real, imaginary or other one. If it is necessary to describe mov-
ing, growing etc. objects like those in the Fig.1, obviously we need
in multidimensional coordinates with \(\mathcal{N} \) numbers of different Nature.
Real numbers 1 are created by inverse operations of the 1-st and
2-nd step, imaginary numbers 2 = -1 are created by inverse opera-
tions of the 3-d step (root), "superimaginary" numbers 3 are crea-
ted by inverse operations of the 4-th step ("superroot") etc. It must
be noted, that the "Fundamental theorem of algebra" sais nothing abo-
out operations of 4-th, 5-th etc. steps. Consequently this theorem
must not be a ban for creation of new numbers, as take place for a
long time; and roots of some numbers are not polygons but polyhedrons.
Fig. 1 3-DIMENSIONAL OBJECTS OF NONEUCLIDIAN SYMMETRY ("MATHEMATICAL NATURMORT")

S - TWISTED TORUS ("EIGHT")
Y - CURVED ELLIPSOID ("CUCUMBER")
M - THORUS OF VARIABLE CROSS-SECTION ("EAR-RING")
M' - DEFORMATED SPHERE ("PEAR")
B - MATHEMATICAL MODEL ("COCHLEA")
T - CURVED WING ("WING")
R - MULTIPLEXED SPIRAL ("FLOWER")
Y' - CURVED cone ("HORN OF ABUNDANCE")
Fig. 2 CALCULATED 3-ORTHOGONAL SYSTEM OF COORDINATES OF NONEUCLIDIAN SYMMETRY: CURVED ELLIPSOID ("CUCUMBER")

BIBLIOGRAPHY

Balakshin O.B., Multidimensional symmetry and its adequate graphic-analytical representation in the system "man-machine-environment". In this publication.

