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ON 3-PERIODIC MINIMAL SURFACES. II. TOPOLOGICAL PROPERTIES.

FISCHER, Werner

Institut fir Mineralogie, Universitat Marburg, Hans-Meerwein-Str.,
D-3550 Marburg

Genus and Euler characteristic

A non-periodic surface in R3 is said to be of genus g if it may
topologically be deformed to a sphere with g handles. For 3-pe-
riodic minimal surfaces a modified definition must be used (cf.
Schoen, 1970) counting only the number of handles per primitive
unit cell. In other terms, the 3-periodic surface is embedded in
a (flat) 3-torus T’ to get rid of all translations, and then the
conventional definition of the genus may be applied. This proce-
dure corresponds to identifying the opposite faces of a primi-
tive unit cell.

The genus of a 3-periodic minimal surface may be calculated in
different ways, two of which will be discussed in the following:

(1) Labyriath graphs: Each 3-periodic minimal surface without
self-intersection subdivides R® into two infinite regions, called
labyrinths, which are connected but not simply connected. Schoen
(1970) proposed to represent the labyrinths by graphs in the
following way: Each labyrinth graph is entirely located within
its labyrinth; each branch of a labyrinth contains an edge of

its graph; each circuit of one labyrinth graph encircles at least
one edge of the other graph.

Any of the two labyrinth graphs may be used to represent topolo-
gical properties of the surface. As each circuit of the graph
corresponds to a handle of the surface the number of circuits
per primitive unit cell may be counted to get the genus of the
surface. In case of a minimal balance surface (intersection-free
3-periodic minimal surface that subdivides R® in two congruent
labyrinths; cf. Fischer & Koch, 1987) the symmetry is best de-
scribed by a group-subgroup pair G-H of space groups with index
2, and the genus has to refer to a primitive unit cell of the
subgroup H. There exist two different possibilities to derive
the genus with the aid of labyrinth graphs:

(a) In modification of a procedure proposed by Hyde (1989), a
connected subgraph containing no translationally equivalent
vertices may be separated from a labyrinth graph. Then the
genus of the surface may be calculated as

g=B+q,
where p is the number of edges connecting the finite sub-
graph to the rest of the infinite labyrinth graph, and q is
the number of edges that has to be omitted to make the sub-
graph simply connected. As p equals at least 6 the genus

of a 3-periodic minimal surface without self-intersection
is at least 3.
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(b) Keeping in mind the embedding of the minimal surface in the
torus T*® a more crystallographic formula for the genus may be
derived. g equals the difference between the number e of edges
in the embedded labyrinth graph and the number e_ of edges in
any simply connected subgraph with the same numb&r v of ver-

tices. With
e:)___miei/z and eszv-1=Emi-1
i i
it follows:

g=e-e =1+2:HL(9./2-1).
s SRR AR

Here m. means the multiplicity of the i-th kind of vertices

referrdd to a primitive unit cell of H, and e. is the number
of edges meeting in this vertex. The summatioh runs over all
kinds of symmetrically equivalent vertices of the labyrinth

graph.

Details on the labyrinth graphs and the genera of the known minimal
balance surfaces are tabulated by Fischer & Koch (1989c).

(2) Euler characteristics: An intersection-free surface in R’ may
also be characterized by a number X, its Euler characteristic. x
is related to g by

g=1-x/2.
The Euler characteristic of an intersection-free surface may be
derived in a simple way by defining a tiling on the surface, i.e.
by subdividing the surface into tiles (disk-like surface patches).
For such an arbitrary tiling the equation

X=f-e+v
holds, where f, e and v are the numbers of tiles (faces), edges
and vertices, respectively, in the ‘tiling. For a 3-periodic sur-
face the tiling must be compatible with the translations of the
surface, and the tiles, edges and vertices have to be counted
per primitive unit cell of H (cf. Fischer & Koch, 1989c).

For a minimal balance surface generated from disk-like-surface
patches spanned by skew polygons of 2-fold axes (cf. Fischer &
Koch, 1987; Koch & Fischer, 1988) these surface patches may be
used as tiles. Then X may be calculated as

x=f(1-e /2)+Zv ,
p R

where e is the number of edges of such a skew polygon, f is the
number "of skew polygons and v. the multiplicity for the i-th kind
of symmetrically equivalent vebtices. f and vi are both referred
to a primitive unit cell of H.

I[f a minimal balance surface consists of catenoid-like surface
patches spanned between parallel plane nets of 2-fold axes (Koch
& Fischer, 1988) its Euler characteristic is given by

X=vy-ey,
where v, and e, refer to the plane nets of 2-fold axes. v, means
the numger of Uertices, ey the number of edges counted fob all
nets of 2-fold axes and pgr primitive unit cell of H. Making use
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of the relation fN-eN+vN=0 for nets, the genus may be calculated
from x as

g=k+1
where k=fN/2 gives the number of catenoids per primitive unit
cell of H. The same formulae hold for minimal balance surfaces
generated from infinite strips spanned between plane nets of
2-fold axes (Fischer & Koch, 1989b). Then k must be understood
as the number of original catenoids (per primitive unit cell of
H) that have been united to infinite rows.

Similar formulae have been derived (Fischer & Koch, 1989¢) for
three other kinds of minimal balance surfaces spanned also be-
tween parallel plane nets of 2-fold axes. Here k means the number
of surface patches per primitive unit cell of H.

If a minimal balance surface is made up from multiple catenoids
(Koch & Fischer, 1989a; Karcher, 1988)

g=km+1
holds. m gives the number of catenoids that must be united to
form one multiple catenoid.

The genus of a minimal balance surface built up from branched
catenoids (Fischer & Koch, 1989a) is given by
g_k(1+b) "y
7z .
b is the number of branches at one of the ends of a branched
catenoid.

I[f a minimal balance surface may be generated from catenoids
with s spouts attached (Koch & Fischer, 1989b), its genus may
be calculated as

‘ g=ks+1.

Flat points

For each point of a minimal surface the defining condition
K1+K2=D
must be fulfilled, where K1 and K, are the main curvatures in
that point. Normally K1=-K #0 holas, i.e. the point is a saddle
point. For exceptional poiﬁts, however,
K,=K2=D
may be fulfilled. Such points are called flat points of the sur-
face. In contrast to normal saddle points, the surrounding of
a flat point shows n valleys separated by n ridges {(na3). The
simplest example with n=3 is the “monkey saddle".

For any point on an intersection-free minimal surface its de-
gree of flatness may be characterized by an integer number B,
called its order. The order of a point P_ with normal vector
N, can be derived as follows: A second po?nt P with normal vec-
tor n is moved on the surface around P_. If P_ is a normal point,
i rotates once around . during one redolutiol of P. If, how-
ever, P_is a flat poin?, il rotates more than once (e.g. p times)
around A per revolution of P. Then the order B of P0 is de-
fined as

B=p-1.
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Accordingly, a normal point has order B=0, and the order of a
flat point may equal any positive integer. For 3-periodic mini-
mal surfaces flat-point orders up to B=4 have been observed so
far. The number n of valleys (or ridges) in the surrounding of
a flat point is

n=B+2.

Each order of a (flat) point corresponds to a maximal site sym-
metry of such a point. This symmetry is 3m2 for B=0, 3m for B=1,
Bm2 for B=2, 5m for B=3 and T%mz for B=4. Therefore, most site
symmetries of points on a minimal surface enforce the existence
of a flat point. Conversely, only points with site symmetry &,
222, 2mm, 2, m, or 1 can be non-flat points of a minimal sur-
face.

There exists a relation between the genus of an intersection-
free minimal surface and the order of its flat points (cf. Hyde,
1989; Hopf, 1983).

g=1+%Li_Bi.

The sum runs over all flat points within a primitive unit cell
of H. This formula can be used in different ways:

(1) If all flat points with their orders are known the genus of
a minimal surface may be calculated.

(2) If the symmetry of a minimal surface and its genus are known
the relation between flat-point symmetry and flat-point or-
der in combination with the above formula may be used to de-
rive ? complete list of flat points (cf. Koch & Fischer,
1989c¢).
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