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ARTISTIC PATTERNS WITH
HYPERBOLIC SYMMETRY

DUNHAM, Douglas

Department of Computer Science
University of Minnesota, Duluth

Duluth, Minnesota 55812
U.S.A.

Introduction

Probably the first repeating patterns of the hyperbolic plane were trian-
gle tessellations (see Figure 1 below) which, though attractive, were not
originally created for artistic purposes. Almost certainly the Dutch artist
M. C. Escher was the first person to combine hyperbolic geometry and art
in his four patterns Circle Limit I, Circle Limit II, Cirele Limit III, and Cir-
cle Limit IV — see Catalog Numbers 429, 432, 434 (and p. 97), and 436
(and p. 98) of [Locher, 1982]. It is exacting and time-consuming to create
such patterns by hand as Escher did. In the late 1970’s, the power of com-
puters was applied to the problem of creating such patterns. Since then,
much progress has been made-in this area which spans mathematics, art,
and computer science [Dunham, 1986a], and [Dunham, 1986b).

We will begin with a review of hyperbolic geometry, repeating patterns
and tessellations, symmetries of hyperbolic patterns, and color symmetry.
Then the theory of repeating hyperbolic patterns will be related to that
of Euclidean and spherical patterns. Finally, a computer-aided hyperbolic
pattern-generation process will be described.

Hyperbolic Geometry

By definition, (plane) hyperbolic geometry satisfies the negation of the Eu-
clidean parallel axiom together with all the other axioms of (plane) Euclidean
geometry. Consequently, hyperbolic geometry satisfies the following parallel
property: given a line £ and a point P not on that line, there is more than one
line through P not meeting £. Unlike the Euclidean plane and the sphere, the

entire hyperbolic plane cannot be isometrically embedded in 3-dimensional

Euclidean space. Therefore, any model of hyperbolic geometry in Euclidean
3-space must distort distance.

The Posncaré circle model of hyperbolic geometry has two properties that
are useful for artistic purposes: it is conformal (i.e. the hyperbolic measure
of an angle is equal to its Euclidean measure), and it lies within a bounded
region of the Euclidean plane — allowing an entire hyperbolic pattern to be
displayed. The “points” of this model are the interior points of a: bounding
circle in the Euclidean plane. The (hyperbolic) “lines” are interior circular
arcs to the bounding circle, including diameters. The edges of the curved
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triangles in Figure 1 and the backbones of the fish in Figure 2 represent
hyperbolic lines.

Flgure 1. A pattern with symmetry group [8, 4]*. Figure 2. A computer generated rendition of
M. C. Escher's Circle Limit I pattern.

Repeating Patterns, Tessellations, Symmetries

A repeating pattern of the hyperbolic plane is a pattern made up of hyper-
bolically congruent copies of a basic subpattern or motif. For instance, any
adjacent black-white pair of triangles of Figure 1 forms a motif. Similarly, a
black half-fish plus an adjacent white half-fish make up a motif for Figure 2.

An important kind of repeating pattern is the regular tessellation, {p,q},
of the hyperbolic plane by regular p-sided polygons, or p-gons, meeting ¢
at a vertex. It is necessary that (p — 2)(g — 2) > 4 to obtain a hyperbolic
tessellation. Figure 3 shows the tessellation {6,4} (solid lines) and its dual
tessellation {4,6} (dotted lines).

A symmetry operation or simply a symmetry of a repeating pattern is an
isometry (hyperbolic distance-preserving transformation) of the hyperbolic
plane which transforms the pattern onto itself. For example, reflections
across the backbones in Figure 2 and across any of the lines of Figure 3
are symmetries of those patterns (reflections across hyperbolic lines of the
Poincaré circle model are inversions in the circular arcs representing those
lines [or ordinary Euclidean reflections across diameters]). Other symmetries
of Figure 2 include rotations by 180 degrees about the points where the trail-
ing edges of fin-tips meet, and translations by four fish-lengths along back-
bone lines (in hyperbolic geometry, as in Euclidean geometry, a translation
is the product of reflections across two lines having a common perpendicu-
lar, and the product of reflections across two intersecting lines produces a
rotation about the intersection point by twice the angle of intersection).

The symmetry group of a pattern is the set of all symmetries of the
pattern. The symmetry group of the tessellation {p, ¢}, denoted [p, q], can be
generated by reflections across the sides of a right triangle with acute angles
of 180/p, and 180/q degrees; i.e. all symmetries in the group [p,g] may be
obtained by successively applying a finite number of those three reflections.
Thus, [6,4] is the symmetry group of the tessellation {6,4} formed by the
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solid lines of Figure 3 — in fact [6,4] is the symmetry group of the entire
pattern of Figure 3. The orientation-preserving subgroup of |p, g consisting
of symmetries made up of an even number of reflections is denoted [p,g]*.
The symmetry groups of Figures 1 and 4 are [6,4]™ (it is just [6,4] if the
color of the triangles is ignored), and [5,5|* respectively. For more about
the groups [p, g], see Sections 4.3 and 4.4 of {Coxeter and Moser, 1980].

Figure 3. The tesscllations {6,4} (solid lines)

and {6,4} (dotted lines), and other lines (dashed) of Figure 4. A pattern with symmetry group [5,5]*.
reflective symmetry of the pattern.

Color Symmetry

A pattern is said to have n-color symmetry if each of its motifs is drawn with
one of n colors and each symmetry of the pattern maps all motifs of one
color onto motifs of another (possibly the same) color; i.e. each symmetry
permutes the n colors. The pattern of Figure 1 has 2-color symmetry (as does
the Euclidean checkerboard pattern): reflection of the pattern across the side
of any triangle interchanges black and white; rotation about a triangle vertex
through twice its angle produces the identity permutation — black triangles
go to black triangles and white triangles go to white triangles. For more on
color symmetry, see [Senechal, 1983], and [Shubnikov and Koptsik, 1974).

Relation to Euclidean and Spherical Patterns

If the “>" in the relation (p — 2)(¢ — 2) > 4 is replaced by “=" or “<”,
one obtains tessellations of the Euclidean plane and the sphere respectively.
In the Euclidean case, the corresponding symmetry groups of these tessel-
lations are [4,4] = p4m and [3,6] = p6m which contain all 17 of the plane
crystallographic groups as subgroups (see Section 4.6 and Table 4 of [Coxeter
and Moser, 1980)). In the spherical case, the groups (2,4], [3,3], [3,4], and
[3,5], contain all the discrete spherical groups as subgroups. The notion of
hyperbolic color symmetry also specializes to the usual notions of Euclidean
and spherical color symmetry. If a pattern has symmetry group [p, g] (dis-
regarding color), we have found that there are 5, 2, and 16 possible kinds
of 2-, 3-, and 4-color symmetry respectively for that pattern. Some of these
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kinds of color symmetry require that certain divisibility conditions hold for
p and g (e.g. p must be even). Consequently, when the divisibility conditions
are not met, these kinds of color symmetry cannot appear in Euclidean or
spherical patterns with symmetry groups of the form [p,g]). However, in the
case of hyperbolic patterns with symmetry groups of the form [p, g], there
are infinitely many values of p and g satisfying all the divisibility conditions
for 2-, 3-, or 4-color symmetry.

-The Hyperbolic Pattern-Creation Process

The present version of the computer program allows for the design of repeat-
ing patterns with color symmetry whose symmetry group is a subgroup of
[p,q] and whose motif lies within a p-gon of the corresponding tessellation
{r,q}. The pattern-creation process consists of two parts: (1) design of the
motif, and (2) replication of the whole pattern from the motif. The design
of the motif is done most easily with a computer graphics input device such
as a data tablet or mouse — the motif is outlined by a sequence of points
entered by the input device and connected by line segments.

To replicate a pattern from a motif, first note that it is easy to replicate
that part of a pattern within a p-gon of {p,q} if that p-gon already has
a copy of the motif within it — the copy of the motif is simply rotated
about the center or reflected across lines through the center of the p-gon.
The algorithm for replicating the whole pattern depends on the fact that
the p-gons of {p,q} form “layers”: the first layer is a p-gon centered in the
bounding circle, and each subsequent layer is defined inductively as the set
of p-gons having a common vertex (only) or edge with a p-gon from the
previous layer. Then it is merely a matter of moving a copy of the motif
from one p-gon to another (either from one layer to the next or within a
layer), using appropriate elements of the symmetry group. For more details
on the pattern-creation process, see [Dunham, 1986a).
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