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VIBRATIONS OF SYMMETRIC MECHANICAL SYSTEMS

L.Ja.Banach,101830 Moskow, Griboedov 8tr., 4.
Research Institute of Mechanical Engineering,
USSR Academy of Sciences

sSystems, that have geometrical symmetry,find wide application
in many branches of mechanical engineering: they comprise various
foundations, reduction systems, bladed rotors,etc.

The dynamics of such systems has certain features which nake
their use "a must”.Typical of them, in particular, are: a)inde-
pendence of various classes of motion (e.g.progressive and tor-
sional);b) existence of a comparatively "quiet" zone - the sym-
metry centre,which is a node for all torsional vibrations.

symmetric systems in mechanics have unique features, which
strongly influence the work of such systems; they are:

1) technological scatter of parameters, resulting in asymmetry
(quasi-symmetric systems);

2) hilerarchy of subsystems, each having a symmetry of its own;

3) existence of extended solid bodies with 6 degrees of free-
dom and indefinite type of symmetry:;

4) multidimensional displacements of characteristic points,
defining the type of symmetry (generally having 6 degrees of free-
dom). Certain specific features are introduced due to the employ-
ment of finite element method (FEM).

All these features have necessitated generalisation of the
existent approaches and creation of symmetry block operators. To
this end block projective operators have been introduced, -such ope-
rators comprising diagonal blocks which allow to account for a nul-
timeasurable nature of system nodes; "equivalent points", chosen for
extended solid bodies, are unique in that their displacements are
concerted with group symmetry of an entire system.

Block operators of symmetry can be expressed as

By = —,3:"2_)(” (") g (1)

where n— order of group G; fy — measure of Mg—th representation;
- diagonal matrix, comprised of characters of the/k—th
irreducible representation; g - element of group G.
Transformation of coordinates

hﬂPﬂ,Y (2)

is equivalent to matrix transformation of the original dynamic
matrix of stiffness

— n
n=(p/')'np/' ( 3)

On the power of orthogonality of various irreducible repre-
sentations, matrix D falls into independent blocks, each of which
describes irreducible representation of its own

— Dy A
D=K-A M! D, . !
L ‘e Dn g
For quasi-symmetric systems such falling is effected with
accuracy down to tiny magnitudes of the order of & , occurrable in

out-diagonal elements of matrix D, which is a sign of weak inter-
relation between independent classes of motions.
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Thus, representing the original matrix as (4), will mean de-
composition of system in conformity with independent classes of
motions, defined by (2,3); in this sense, (2) can be regarded as
generalized forms of virations. Such generalized forms of vibrations
are convenient when analyzing multimeasurable systems, since it is
unreasonable to follow each form of vibrations separately. This is
particularly important for forced vibrations because external forces
are usually distributed in conformity with one of subspaces (2), so
that only one block remains in (4) which describes this subspace.

To analyze forced vibrations on the basis of the group re-
presentation theory it is necessary to decompose external force
vector by symmetry operators as

F=pAF .

The analysis of operators (2) permits the following tenden-
cies in symmetric system vibrations be revealed without aid of
computers: a) to establish undulating character of vibrations;

b) to establish the number of independent classes of motions and
their configurations, also the number of multiple frequencies;

c) to find out how different classes of motions are interrelated
depending on asymmetry distribution; d) to define optimum methods
of distributing asymmetric elements under different applications
of load; e) to account for symmetry in a hierarchy of subsystems;
in this case the resultant operator will be the product of opera-
tors for each of the subsystems, i.e. the product of undulating
motions for corresponding types of symmetry. In engineering prac-
tice such a hierarchy is, in fact, a routine procedure involved
in improving design models, in the course of which they become
progressively more detailed. - :

The approach has been used to analyze vibrations in symmet-
ric and quasi-symmetric frames-foundations for power generating
plants. PFig.1 shows a damped pentagonal frame; its symmetry group
is C .Offered for observation is a finite element model with
two intermediate nodes. 6-15 on either side.

It is reasonable to choose the coordinate system for each
vertex 1-5, due account made of the entire frame symmetry (Fig.1la).

Fig. 1

Then the dynamic matrix of stiffness will assume a simple form,
comprising blocks of two types
r
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Character T means transposition, 69&’ - matrix of. torsion
through angle'y9 . Basis vectors of subspaces form blocks of pro-



jective operators P, so that blocks a are’ transformed similarly
to scalars for unimeasurable nodes. The analysis of operators
shows that the system has one unimeasurable and two two-measurable
representations, i.e. there are 2n/5 two-fold roots,corresponding
to representation Uy, 2n/8 two-fold roots,corresponding to Ug, and
n/5 - one-fold roots. If additional nodes are present on the penta-
gon sides, representation (2) will decompose original matrix D as

I"D4

! D22 D23
D=1 Dg2 D3
!

PR |

Dyy Dys
L Doy Des

when classes of motions for either of subspaces Uy and Uz are in-
terrelated. This is attributed to the fact that the forms of vibra-
tions of 1-5 nodes and those of 6-14 and 7-15 nodes are linear
combinations of hae&U, and hjé Uy, vectors; generally speaking, they
are non-orthogonal to the former thus explaining the emergence of
terms DiJ). This conclusion will obvious]y hold for any finite-ele-
ment model.

FPig. 2 shows the results of calculation of low natural frequen-
cies and forms of vibrations, whose analysis confirms theoretical
conclusions about gquantities of multiple freguencies and configura- -
tion of vibrational forms. The analysis of amplitudes of vibrations
shows that displacement 1-6, 6-8-10~12-14 and 7-9-11-13-15 vary by
representations, belonging to one subspace, which means correct -
choice of projective operators in a block-like form (2).

Pig. 2. a,§-21,7;6-24,3;2,2-29,8;0-30,9:2,3-35,2;4,k-50,8 gz

Study of gquasy-symmetric systems. For quasi-symmetric systems
the dynamic matrix of stiffness can be presented, after having
made group transformations, as

— 1Dy €Dy . . .£ Dyt
pﬂ § 22 * 3 bzh !"
{ symmetric Dy d

which reflects weak interrelation between independent subspaces.
A solution for natural and forced vibrations can be represented as
converging series by exponents & .

At forced vibrations the 1nterrelation of various subspaces
is defined both as distribution of external force and as occurrence
of resonance states at &) = “Del{ in some of a subaystem.

Fig.s ‘shows -a damped square-Sfaped Frameo ’nienrded For ,00""42
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shaped frame intended for power
generating equipment. As a rule

it is practically impossible to
make the frame perfectly symmetric:
there is always a scatter of
parameters leading to interrelation
of vibrations and occurrence

of beatings as a result of detuning

of multiple frequencies. Let us
consider the interrelation of vibra- 37 2z
tions caused by the scattering i L
of dampers” stiffness parameters.

The frame stiffness matrix after Fig. 3

being expanded by symmetry operators

rda, +8a  +SH, Hy-Hp-H;~Hy Hy+Hg~Hg-H, H, -H,—H, +H, 7

v T 4a, +Bay, 4SH, H,-HtH,-H, H+Hg-Hy-H, { (b)

! 43, +3H, H,-H, +Hy -Hy !

1§ symmetric 4a,, wH
where ag and ag are determined similarly ( 5 ). _

When distributing asymmetry to type U, i.e, Hy=~Hz=-Hz =Hy

as evident from ( 6 ). interrelations arise between subspaces
U, and Uy .
Hence:
- if the external force is distributed to type Uz , 1i.e. B =F; =
B = -F} ., then resonance states may arise on natural frequencies

in subspaces U, and U, ;in this case there will be no torsional
vibrations about axes x and vy.

Similar conclusions can be drawn for other cases of asymmetry
and external force distribution. .

As obvious from the example cited above, frame asymmetry ap-
preciable influences the dynamics of system as a whole: progressive
and torsional vibrations are generally not decoupled; beatings arise
as a result of detuning of natural multiple frequencies; placing
the rotor into geometrical centre of symmetry does not help in di-
viding shapes of vibrations. However, knowing the scaterring of
dampers characteristics and distribution of external force, one
can, employing the approach offered, arrange the dampers in such
a manner that their asymmetry will not induce any interrelation
between certain classes of motions,ensuring good vibration resis-
tance of the object. These gqualitative conclusions can be obtained
without computer-assisted design, by merely analyzing the pro-
jective operators.
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